Doctoral Thesis (2006)

Studies on Molecular Structures, Electronic Spectra, and Reactivities of Uranyl(V) and -(VI) Complexes

Koichiro Mizuoka

Department of Nuclear Engineering Graduate School of Science and Engineering Tokyo Institute of Technology

Supervisor Associate Professor Yasuhisa Ikeda

Contents

1	Intr	oduction	11
	1.1	Actinyl Ions	12
	1.2	Uranyl(VI), the Most Popular Actinyl Ion	15
	1.3	Actinyl Ions with 5f ¹ Configuration	22
		1.3.1 Uranyl(V) ion; $U^VO_2^+$	22
		1.3.2 Other $5f^1$ Systems: Neptunyl(VI) and Plutonyl(VII)	25
	1.4	Objectives in This Doctoral Thesis	27
2	Synt	theses and Characterizations of Uranyl(VI) Complexes	29
	2.1	$Na_4[UO_2(CO_3)_3]$	30
		2.1.1 Experimental Details	30
		2.1.2 Results and Discussion	30
	2.2	UO ₂ (saloph)DMF	33
		2.2.1 Experimental Details	33
		2.2.2 Results and Discussion	34
	2.3	UO ₂ (saloph)DMSO	45
		2.3.1 Experimental Details	45
		2.3.2 Results and Discussion	45
	2.4	$UO_2(dbm)_2DMSO$	51
		2.4.1 Experimental Details	51
		2.4.2 Results and Discussion	51
3	Ura	nyl(V) Carbonate Complex in Aqueous System	59
	3.1	Spectroelectrochemistry of $[U^{VI}O_2(CO_3)_3]^{4-}$ in Aqueous Solution	60
		3.1.1 Experimental Details	60
		3.1.2 Results and Discussion	61
	3.2	Kinetics of Ligand Exchange Reaction in $[U^VO_2(CO_3)_3]^{5-}$	65
		3.2.1 Experimental Details	65
		3.2.2 Results and Discussion	65
4	Elec	ctrochemical and Spectroelectrochemical Studies on Uranyl(VI) Complexes	5
	in N	Ionaqueous Systems	71
	4.1	$U^{VI}O_2(saloph)DMF$ in <i>N</i> , <i>N</i> -Dimethylformamide	72
		4.1.1 Experimental Details	72
		4.1.2 Results and Discussion	72
	4.2	$U^{VI}O_2(saloph)DMSO$ in Dimethyl Sulfoxide	79
		4.2.1 Experimental Details	79

Contents.

		4.2.2 Results and Discussion	79
	4.3	$U^{v_1}O_2(dbm)_2DMSO$ in Dimethyl Sulfoxide $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	84
		4.3.1 Experimental Details	84
		4.3.2 Results and Discussion	84
5	Stru	ctural Changes of Uranyl Moiety with Reduction from $U(VI)$ to $U(V)$	89
	5.1	Experimental Details	90
	5.2	Results	91
		5.2.1 $[U^{v}O_{2}(saloph)DMSO]^{-}/U^{v}O_{2}(saloph)DMSO$	
		in Dimethyl Sulfoxide	91
		5.2.2 $[U^*O_2(dbm)_2DMSO]^-/U^*O_2(dbm)_2DMSO$	00
	5 2	In Dimethyl Sulfoxide	92
	5.5		94
6	Elec	tronic Spectra of Uranyl(V) Complexes	97
	6.1	Experimental Details	98
	6.2	Results	98
		6.2.1 $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ in $D_{2}O$	98
		6.2.2 $[U^VO_2(\text{saloph})\text{DMSO}]^-$ in Dimethyl Sulfoxide	100
		6.2.3 $[U^VO_2(dbm)_2DMSO]^-$ in Dimethyl Sulfoxide	100
	6.3	Discussion	102
7	Con	clusion	115
Ac	know	ledgment	123
Re	feren	ces	125
Ap	pend	ix	135
A	Crys	stallographic Information of $\mathbf{U}^{VI}\mathbf{O}_2$ (saloph)DMF·CH $_2$ Cl $_2$	135
B	Crys	stallographic Information of $[\mathbf{U}^{VI}\mathbf{O}_2(\mathbf{saloph})]_2$	145
С	Crys	stallographic Information of $[\mathbf{U}^{VI}\mathbf{O}_2(\mathbf{saloph})]_2 \cdot \mathbf{0.5CH}_2\mathbf{Cl}_2$	163
D	Crys	stallographic Information of $U^{VI}O_2$ (saloph)DMSO	181
E	Crys	stallographic Information of U ^{VI} O ₂ (dbm) ₂ DMSO	193
F	NTN /171		011
ľ	INIVI	K Kelaxauon Times in Paramagnetic Solutions	411

List of Figures

1.1	Schematic shapes of real function of f orbitals.	13
1.2	Scheme of symmetry allowed combinations of atomic orbitals in actinyl ions	13
1.3	MO diagram of bare $U^{VI}O_2^{2+}$	14
1.4	Schematic geometries of uranyl(VI) complexes.	16
1.5	Structure of $U^{VI}O_2(NO_3)_2(NCP)_2$.	17
1.6	ORTEP view of $K_4 U^{VI}O_2(CO_3)_3$.	18
1.7	UV-visible absorption spectrum of uranyl(VI) perchlorate in 1-butyl-3-methylimidazolium	
	nonafluorobutanesulfonate ionic liquid at room-temperature.	21
1.8	Visible and near-infrared electronic absorption spectra of $U^V X_n^{5-n}$ species	25
1.9	Absorption spectrum of the neptunyl(VI) ion in 1 M H(D)ClO ₄ aq	26
2.1	Vibrational spectra of Na ₄ [UO ₂ (CO ₃) ₃]. Black line: IR, red line: Raman. Black dotted line is	
	the Raman spectrum of Na_2CO_3 for a comparison	30
2.2	UV-visible absorption spectrum of the aqueous solution dissolving Na ₄ [UO ₂ (CO ₃) ₃] (5.5 ×	
	10^{-2} M) and Na ₂ CO ₃ (1.0 M)	31
2.3	13 C NMR spectrum of D ₂ O solution dissolving Na ₄ [UO ₂ (CO ₃) ₃] (4.09×10 ⁻² M) and Na ₂ ¹³ CO ₃	
	$(5.74 \times 10^{-1} \text{ M}).$	32
2.4	Schematic structure of N, N' -disalicylidene- o -phenylenediamine (H ₂ saloph)	33
2.5	IR spectrum of $UO_2(saloph)DMF$ in KBr	34
2.6	ORTEP view of asymmetric unit of UO ₂ (saloph)DMF·CH ₂ Cl ₂	35
2.7	¹ H NMR spectra of dichloromethane- d_2 solution dissolving UO ₂ (saloph)DMF at various tem-	
	peratures	36
2.8	ORTEP views of racemic units of $[UO_2(saloph)]_2$	38
2.9	ORTEP view of crystal lattice of $[UO_2(saloph)]_2 \cdot 0.5CH_2Cl_2$.	39
2.10	UV-visible absorption spectra of (a) dichloromethane and (b) chloroform solutions containing	
	$[UO_2(saloph)]_2$ ((a): 1.26×10^{-5} M, (b): 1.19×10^{-5} M) and various total concentration of	
	DMF ((a): $0 \sim 2.32 \times 10^{-3}$ M, (b): $0 \sim 5.95 \times 10^{-3}$ M) at 298 K	40
2.11	Semi-logarithmic plots of K_{dim} vs. the reciprocal temperature for dimerization of UO ₂ (saloph)-	
	DMF (Eq. 2.1) in dichloromethane- d_2 and chloroform- d .	40
2.12	¹ H NMR spectra of $[UO_2(saloph)]_2$ in dichloromethane- d_2 at different temperatures	41
2.13	Scheme of intramolecular exchange between enantiomers of $[UO_2(saloph)]_2$	41
2.14	Scheme of flipping model for the intramolecular exchange in $[UO_2(saloph)]_2$	42
2.15	Scheme of sliding model for the intramolecular exchange in $[UO_2(saloph)]_2$	42
2.16	(a) ¹ H NMR spectra of dichloromethane- d_2 solution containing UO ₂ (saloph)DMF (1.6 ×	
	10^{-2} M) and DMF (1.02×10^{-1} M) measured at various temperatures and (b) temperature	10
0.17	dependence of k_{ex} .	43
2.17	Whole reaction mechanism starting from $UO_2(saloph)DMF$ including the DMF exchange, the	
	dimerization, and the intramolecular exchange between the enantiomers of $[UO_2(saloph)]_2$ in	1 4
0 10	dichloromethane and chloroform solutions.	44
2.18	IK spectrum of UU_2 (saloph)DMSU in KBr	43

Contents.

2.19	ORTEP view of asymmetric unit of $UO_2(saloph)DMSO.$	46
2.20	¹ H NMR spectra of dichloromethane- d_2 solution dissolving UO ₂ (saloph)DMSO at various temperatures.	47
2.21	UV-visible absorption spectra of (a) dichloromethane and (b) chloroform solutions containing $[UO_2(saloph)]_2$ ((a): 1.26×10^{-5} M, (b): 1.15×10^{-5} M) and various total concentration of DMSO ((a): $0 \sim 4.76 \times 10^{-4}$ M, (b): $0 \sim 1.04 \times 10^{-3}$ M) at 298 K	48
2.22	Semi-logarighmic plots of K_{dim} vs. reciprocal temperature for dimerization of UO ₂ (saloph)- DMSO (Eq. 2.9) in dichloromethane- d_2 and chloroform- d_1 .	48
2.23	(a) ¹ H NMR spectra of dichloromethane- d_2 solution containing UO ₂ (saloph)DMSO (1.37 × 10 ⁻² M) and DMSO (3.29 × 10 ⁻² M) measured at various temperatures and (b) temperature dependences of k_{ex} .	49
2.24	Schematic structure of <i>keto</i> -form of dibenzovlmethane (Hdbm).	51
2.25	IR spectrum of UO ₂ (dbm) ₂ DMSO in KBr.	52
2.26	ORTEP view of asymmetric unit of UO ₂ (dbm) ₂ DMSO.	53
2.27	¹ H NMR spectra of dichloromethane- d_2 solution dissolving UO ₂ (dbm) ₂ DMSO at room tem-	00
2.27	perafure	53
2.28	¹ H NMR spectra of $UO_2(dbm)_2DMSO$ in dichloromethane- d_2 focused on the signals due to the <i>a</i> -proton in dbm	54
2.29	Scheme of intramolecular exchange of the phenyl ring positions and the rotation of the phenyl	01
2.2)	ring	55
2.30	(a) ¹ H NMR spectra of dichloromethane- d_2 solution containing UO ₂ (dbm) ₂ DMSO (1.3 × 10 ⁻² M) and DMSO (2.8 × 10 ⁻² M) measured at different temperatures and (b) temperature	
0.01	dependence of k_{ex} .	22
2.31	¹ H NMR spectra of dichloromethane- d_2 solution containing UO ₂ (dbm) ₂ DMSO (1.3×10 ⁻² M) and free DMSO (2.8 × 10 ⁻² M)	50
		30
2.32	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO.$	50 57
2.323.1	Schematic view of OTTLE cell	50 57 60
2.32 3.1 3.2	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60
2.32 3.1 3.2	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60 61
2.323.13.23.3	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60 61 62
 2.32 3.1 3.2 3.3 3.4 	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60 61 62 66
 2.32 3.1 3.2 3.3 3.4 3.5 	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60 61 62 66 66
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 	Schematic mechanism of the intramolecular exchange reaction in UO ₂ (dbm) ₂ DMSO Schematic view of OTTLE cell	 50 57 60 61 62 66 66 67
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 4.1 	Schematic mechanism of the intramolecular exchange reaction in UO ₂ (dbm) ₂ DMSO Schematic view of OTTLE cell	50 57 60 61 62 66 66 67 73
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 	Schematic mechanism of the intramolecular exchange reaction in UO ₂ (dbm) ₂ DMSO Schematic view of OTTLE cell	50 57 60 61 62 66 66 67 73
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3 	Schematic mechanism of the intramolecular exchange reaction in UO ₂ (dbm) ₂ DMSO Schematic view of OTTLE cell	50 57 60 61 62 66 66 67 73 73 74 76
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3 4.4 	Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$ Schematic view of OTTLE cell	50 57 60 61 62 66 66 67 73 73 74 76 76
 2.32 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3 4.4 4.5 	Schematic mechanism of the intramolecular exchange reaction in UO ₂ (dbm) ₂ DMSO Schematic view of OTTLE cell	50 57 60 61 62 66 67 73 74 76 76 78

Contents.

4.6	Cyclic voltammograms of $U^{VI}O_2(saloph)DMSO (9.55 \times 10^{-4} \text{ M})$ in DMSO containing TBAP (0.10 M) measured in the potential range from -0.073 to -1.773 V vs. Fc/Fc ⁺ at different	
4.7	scan rates ($v = 0.05 - 0.15 \text{ V} \cdot \text{s}^{-1}$)	80
	(0.30 M). Wavelength range, a: 260–600, b: 460–600 nm	81
4.8 4.9	Nernstian plot for the absorbancies at 344 nm in Figure 4.7	81
	concentration, a: 1.67 M , b: 0.818 M , c: 0.486 M , and d: 0.182 M .	82
4.10	Cyclic voltammograms for $U^{VI}O_2(dbm)_2DMSO$ (1.04 × 10 ⁻³ M) in DMSO containing TBAP	
4.11	(0.10 M) in the potential range from -0.323 to -1.723 V	84
4.12	(0.30 M)	85 86
5.1 5.2	Schematic view of IRTLE cell	90
5.3	measured with the standard liquid and IRTLE cells	91
	taining TBAP (0.10 M) at various applied potentials.	92
5.4	IR spectra of $[U^{V}O_{2}(dbm)_{2}DMSO]^{-}/U^{VI}O_{2}(dbm)_{2}DMSO(6.0 \times 10^{-3} \text{ M})$ in DMSO containing TBAP (0.10 M) at various applied potentials.	93
6.1	Electronic spectra of $[U^VO_2(CO_3)_3]^{5-}$ (5.5 × 10 ⁻² M, solid line) and $[U^{VI}O_2(CO_3)_3]^{4-}$ (5.5 × 10 ⁻² M, dotted line) in D ₂ O containing Na ₂ CO ₂ (1.0 M)	99
6.2	Visible-NIR absorption spectra measured at the applied potentials in the range from 0 to $-1.814 \text{ V } vs. \text{ Fc/Fc}^+$ for $[U^VO_2(\text{saloph})\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}$ (5.28 × 10 ⁻³ M) in DMSO containing TDAP (0.20 M)	101
6.3	Visible-NIR absorption spectra measured at the applied potentials in the range from 0 to -1.664 V vs. Fc/Fc ⁺ for $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO$ (4.11 × 10 ⁻³ M) in	101
6.4	DMSO solution containing TBAP (0.30 M)	101
	in DMSO containing TBAP (0.30 M); (c) $[U^VO_2(dbm)_2DMSO]^-$ (4.11 × 10 ⁻³ M) in DMSO containing TBAP (0.30 M); (c) $[U^VO_2(dbm)_2DMSO]^-$ (4.11 × 10 ⁻³ M) in DMSO	103
6.5	Energy diagrams of $[U^VO_2(CO_3)_3]^{5-}$ (upper), $[U^VO_2(saloph)DMSO]^-$, and $[U^VO_2(dbm)_2-DMSO]^-$ (lower) including the D_{6h} or D_{5h} symmetric ligand field and the spin-orbit coupling	105
	effects	114
F.1	Temperature dependence of $P_M^{-1}(T_2^{-1}-T_{2A}^{0-1})$ for the protons in CH ₃ CN solutions of Ni(CH ₃ CN) ² at 56.4 MHz.	212

List of Tables

1.1	Electronic configuration of actinoid elements at various oxidation states	12
1.2	Equilibrium constants (K_{hydro}°) for the hydrolysis of uranyl(VI) ion	16
2.1	Crystallographic data of UO ₂ (saloph)DMF·CH ₂ Cl ₂ $\ldots \ldots \ldots$	35
2.2	Crystallographic data of $[UO_2(saloph)]_2$	37
2.3	Crystallographic data of UO ₂ (saloph)DMSO	46
2.4	Crystallographic data of $UO_2(dbm)_2DMSO$	52
4.1	Electrochemical data of $U^{VI}O_2(saloph)DMF$ in DMF	73
4.2	Electrochemical data of $U^{VI}O_2(saloph)DMSO$ in DMSO	79
4.3	Electrochemical data of $U^{VI}O_2(dbm)_2DMSO$ in DMSO $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	85
5.1	Vibrational and structural properties of AnO_2^{n+} ($n = 1$ or 2) species	95
6.1	Transition energy values of f–f transitions in actinyl species with $5f^1$ configuration	102
6.2	Character table of D_{6h}	106
6.3	Character table of D_{5h}	108
6.4	Character table of D_6^*	111
6.5	Character table of D_5^*	112
7.1	Summary of molecular structures, electronic spectra, and reactivities of uranyl(V) and -(VI)	
	complexes	121

Chapter 1 Introduction

One of the largest issues of human beings in the 21st century is the energy source. Still now, nuclear power is one of the most powerful energy sources in spite of the disasters of the atomic bombs. However, after the use of the nuclear power, a large amount of "dirty wastes" is left. Here, "dirty" means chemically and radioactively toxic. To develop optimal techniques for treating such dirty wastes from the nuclear fuel cycle, accumulation of basic data of actinoid chemistry is essential. Especially, in reprocessing process of spent nuclear fuel and geological disposal of high level radioactive wastes, the knowledges on actinoid chemistry must be necessary, because their main processes are exactly chemical. Thus, basic properties and behaviors of the actinoid elements must be important and should be understood. In this chapter, the details of background, motivation, and objectives of this doctoral thesis are presented.

1.1 Actinyl Ions

The word "actinoid" refers elements with atomic number from 89 (actinium) to 103 (lawrencium), which are lying at the lowest row of the periodic table. At the ground state of the neutral atom of each actinoid element, valence electrons occupy 5f, 6d, and 7s orbitals as follows. For a comparison, the electronic configurations of lanthanoid elements with the

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
5d6s ²	4f ¹ 5d6s ²	$4f^36s^2$	$4f^46s^2$	$4f^56s^2$	4f ⁶ 6s ²	4f ⁷ 6s ²	4f ⁷ 5d6s ²	$4f^96s^2$	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	4f ¹² 6s ²	4f136s2	4f ¹⁴ 6s ²	4f145d6s2
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
6d7s ²	6d ² 7s ²	$5f^2 6d7s^2$	$5f^36d7s^2$	5f ⁴ 6d7s ²	5f ⁶ 7s ²	5f ⁷ 7s ²	5f ⁷ 6d7s ²	$5f^{9}7s^{2}$	5f ¹⁰ 7s ²	5f ¹¹ 7s ²	5f ¹² 7s ²	5f ¹³ 7s ²	5f ¹⁴ 7s ²	5f ¹⁴ 6d7s ²

corresponding number of the valence electrons are also shown here. From this table, most lanthanoid elements have nf^{m-2} $(n + 2)s^2$ electronic configuration at ground state (n = 4, m = Z - 54, where Z is the atomic number) with some exceptions; La $(5d6s^2)$, Ce $(4f^15d6s^2)$, Gd $(4f^75d6s^2)$, Lu $(4f^{14}5d6s^2)$. In the actinoids, most elements has similar electronic configuration to that of the lanthanoid elements in the same column. On the other hand, one can find that the valence electrons of Pa, U, and Np also occupy the 6d orbital in spite of the same number of them with Pr, Nd, and Pm, respectively. Such an aspect is also observed in the difference between the electronic configurations of Ce $(4f^15d6s^2)$ and Th $(6d^27s^2)$. These facts imply that the energy difference between the 5f and 6d orbitals is smaller than that between 4f and 5d ones. Thus, the 5f orbitals are not shielded by outer shells as largely as the 4f orbitals. Actually, it is known that the 5f orbitals can participate to the bonding with other elements.

As a result of the weakly shielded 5f orbital, the lighter actinoid elements from Pa to Am can exist at pentavalent or higher oxidation states. The electronic configurations of these species are summarized in Table 1.1. In aqueous solution, the actinoid elements in such high oxidation states (V, VI, and VII) is hydrolyzed, and consequently, forms an actinyl ion $(AnO_2^{n+}; n = 1, 2, 3)$ as follows.¹⁾

$$An^{(n+4)} + 2H_2O \longrightarrow AnO_2^{n+} + 4H^+$$
(1.1)

As can be seen from Eq. 1.1, the actinoid elements in the high oxidation states act as strong acids in water. The actinyl ions of Pa, U, Np, Pu, and Am are named with suffix "-yl" instead of "-ium", *i.e.*, protoactinyl, uranyl, neptunyl, plutonyl, and americyl, respectively. Essentially, the actinyl ions have linear O=An=O structure. Thus, the bare actinyl ions belong to

	υ				
An	Ш	IV	V	VI	VII
₉₁ Pa	[Rn]5f ²	[Rn]5f ¹	[Rn]	-	-
92U	[Rn]5f ³	[Rn]5f ²	[Rn]5f ¹	[Rn]	-
₉₃ Np	[Rn]5f ⁴	[Rn]5f ³	[Rn]5f ²	[Rn]5f ¹	[Rn]
₉₄ Pu	[Rn]5f ⁵	[Rn]5f ⁴	[Rn]5f ³	[Rn]5f ²	[Rn]5f ¹
₉₅ Am	[Rn]5f ⁶	[Rn]5f ⁵	[Rn]5f ⁴	[Rn]5f ³	-

 Table 1.1. Electronic configuration of actinoid elements at various oxidation states

* [Rn]: closed electronic configuration of radon.

 $[Rn] = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^6.$

** Bold: most stable oxidation state.

Figure 1.1. Schematic shapes of real function of f orbitals.

 $D_{\infty h}$ point group. The linearity of actinyl ions is considered to be due to a contribution of the 5f orbitals. The schematic shapes of real functions of f orbitals are shown in Figure 1.1. The axial oxygen atoms in the actinyl ions have a total of six possible linear combinations of their 2p orbitals (σ_u , σ_g , $2 \times \pi_u$, and $2 \times \pi_g$). All of the atomic orbital combinations allowed by symmetry with either 5f or 6d orbitals in the actinoids are shown in Figure 1.2.²⁾ It should be noted that the ungerade (*u*) symmetry combinations (σ_u , $2 \times \pi_u$) in Figure 1.2 are not possible in use of any d orbitals. For example, the axial oxygen atoms in the uranyl compounds adopt a *trans*- (linear) configuration, while the structures of VO₂⁺ (vanadyl ion) and MoO₂²⁺ (molybdenyl ion) have *cis*- (bent) geometry.³⁾

Figure 1.2. Scheme of symmetry allowed combinations of atomic orbitals in actinyl ions.

Figure 1.3. MO diagram of bare $U^{VI}O_2^{2+}$ by Matsika *et al.*⁴⁾

Because of the participation into the bonding between the axial oxygen and center uranium, it can be predicted that the $5f\sigma_u$, $5f\pi_u$, $6d\sigma_g$, and $6d\pi_g$ orbitals have anti-bonding characters. Figure 1.3 shows the molecular orbital diagram calculated by Matsika *et al.*⁴⁾ As predicted, the $5f\sigma_u$, $5f\pi_u$, $6d\sigma_g$, and $6d\pi_g$ orbitals become the anti-bonding MO, while the $5f\delta_u$, $5f\phi_u$, and $6d\delta_g$ orbitals which are not participated in the formation of the actinyl ion remain as non-bonding orbitals.

X-ray diffraction studies of a number of crystalline uranium(VI) salts have experimentally demonstrated the existence of uranyl(VI) ion in solid state. They were summarized by King.⁵⁾ In UO₂Cl₂(OPPh₃)₂, [UO₂(O₂C₂H₄CO₂)·H₂O], and UO₂(NO₃)₂(OPPh₃)₂, it was found that a linear O–U–O group existed. Furthermore, it was clarified that each uranium atom in BaUO₄, α -SrUO₄, β -SrUO₄, MgUO₄, PbUO₄, CuUO₄, Li₂UO₄, α -Na₂UO₄, β -Na₂UO₄, CaUO₄, UO₃, U₃O₈, and so on is surrounded by oxygen atoms; four or six of such oxygen atoms (O(II)) lie in a plane with the uranium atom all at a distance longer than the remaining two oxygens (O(I)), which lie above and below the uranium atom on a straight line perpendicular to the plane of the O(II) oxygen atoms. In CaUO₄, the U–O(II) distance is 2.30 Å, while the U–O(I) distance is 1.96 Å. It seems likely that the U–O(II) bonds are principally of ionic character, and crystals of CaUO₄ are composed of Ca²⁺, U^{VI}O₂²⁺, and O^{2-} ions. Further, UO_3 can readily dissolve in an acidic aqueous solution according to the following reaction.

$$UO_3(s) + 2HA(aq) \longrightarrow UO_2^{2+} + 2A^- + H_2O$$
(1.2)

where HA and A⁻ are the arbitrary acid and its conjugate base (*e.g.*, A = Cl, NO₃ and so on), respectively. This phenomenon indicates the existence of the uranyl(VI) moiety in UO₃. Crandall has studied the formula of uranyl ion in solution by using ¹⁸O-enriched water as a tracer in the exchange reaction of oxygen atoms coordinated to uranium.⁶⁾ As a result, it has been showed that the uranyl ion exists as U^{VI}O₂²⁺ even in diluted hydrochloric acid solution. Nowadays, it is well accepted that the actinyl ions has the linear $[O=An=O]^{n+}$ structure in both solid and solution states.

1.2 Uranyl(VI), the Most Popular Actinyl Ion

The most well-known actinyl ion is the uranyl(VI), $U^{VI}O_2^{2+}$, which has the radon-like closed shell electronic configuration, [Rn]5f⁰. The hexavalent state is the most stable oxidation state of uranium. Thus, a large number of studies on uranyl(VI) have been reported.

The uranyl(VI) ion also has characteristic linear structure as described above. The U=O distance ($R_{\rm UO}$) in the uranyl(VI) ion has been measured for a large number of compounds. The values is ranging from 1.5 Å (uranyl–8-hydroxyquinolinate) to 2.08 Å (α -UO₃), and the average is 1.77 Å. Since bare uranyl(VI) ion belongs to $D_{\infty h}$ point group, the O=U=O symmetric stretching (v_1) is Raman-active, while the asymmetric stretching (v_3) is IR-active. The v_1 and v_3 peaks of the uranyl(VI) ion generally appear in the ranges of 800–880 cm⁻¹ and 900–960 cm⁻¹, respectively.⁷) The force constants of the U=O bond ($F_{\rm UO}$) range from 2.60 mdyne·Å⁻¹ (α -UO₃) to 10.8 mdyne·Å⁻¹ (UO₂Br₄²⁻). The average values are in the range of 6.0–7.3 mdyne·Å⁻¹. There seems to be a relationship between $R_{\rm UO}$ and $F_{\rm UO}$. Actually, Jones⁸ has rationalized $R_{\rm UO}$ with $F_{\rm UO}$ by using Badger's law⁹ as follows.

$$R_{\rm UO} = \beta F_{\rm UO}^{-\frac{1}{3}} + d_{\rm UO} \tag{1.3}$$

In Eq. 1.3, β is about 1.08 for all pairs of elements if one element has atomic number greater than 18, and d_{UO} is intrinsic value for each uranyl(VI) compound. McGlynn *et al.*¹⁰⁾ have corrected Eq. 1.3 to explain their results systematically obtained as follows.

$$R_{\rm UO} = 1.993 F_{\rm UO}^{-\frac{1}{3}} + 0.666 \tag{1.4}$$

Furthermore, Veal *et al.*¹¹⁾ has expressed $R_{\rm UO}$ with the v_3 frequency in cm⁻¹ (Eq. 1.5).

$$R_{\rm UO} = 81.2\nu_3^{-\frac{2}{3}} + 0.895 \tag{1.5}$$

These empirical relationships between R_{UO} and F_{UO} or v_3 are standing on the systematic investigations for vibrational spectra of widely various uranyl(VI) compounds.

The uranyl(VI) ion can play a role as an acid in aqueous solution even after the formation of $U^{VI}O_2^{2+}$ in Eq. 1.1 as follows.

$$m\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{2+} + n\mathrm{H}_{2}\mathrm{O} \rightleftharpoons (\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2})_{m}(\mathrm{OH})_{n}^{2m-n} + n\mathrm{H}^{+}$$
 (1.6)

In fact, uranyl(VI) salts are distinctly acid in the aqueous solution and it has also been known that large amounts of UO_3 can be dissolved in aqueous solutions of uranyl(VI) salts. The

Reaction	$\log K^{\circ}_{ m hydro} a$
$U^{VI}O_2^{2+} + H_2O \rightleftharpoons U^{VI}O_2(OH)^+ + H^+$	-5.250 ± 0.240
$\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\mathrm{Z}_{+}} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}(\mathrm{OH})_{2} + 2\mathrm{H}^{+}$	-12.150 ± 0.070
$U^{VI}O_2^{\tilde{2}+} + 3H_2O \rightleftharpoons U^{VI}O_2(OH)_3^- + 3H^+$	-20.250 ± 0.420
$\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\tilde{2}+} + 4\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}(\mathrm{OH})_{4}^{\tilde{2}-} + 4\mathrm{H}^{+}$	-32.400 ± 0.680
$2U^{VI}O_2^{2+} + H_2O \rightleftharpoons (U^{VI}O_2)_2(OH)^{3+} + H^+$	-2.700 ± 1.000
$2U^{VI}O_2^{\tilde{2}_+} + 2H_2O \rightleftharpoons (U^{VI}O_2)_2(OH)_2^{2_+} + 2H^+$	-5.620 ± 0.040
$3\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\tilde{2}_{+}} + 4\mathrm{H}_{2}\mathrm{O} \rightleftharpoons (\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2})_{3}(\mathrm{OH})_{4}^{\tilde{2}_{+}} + 4\mathrm{H}^{+}$	-11.900 ± 0.300
$3\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\tilde{2}_{+}} + 5\mathrm{H}_{2}\mathrm{O} \rightleftharpoons (\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2})_{3}(\mathrm{OH})_{5}^{\tilde{+}} + 5\mathrm{H}^{+}$	-15.500 ± 0.120
$3\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\tilde{2}_{+}} + 7\mathrm{H}_{2}\mathrm{O} \rightleftharpoons (\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2})_{3}(\mathrm{OH})_{7}^{-} + 7\mathrm{H}^{+}$	-32.200 ± 0.800
$4\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}^{\tilde{2}+} + 7\mathrm{H}_{2}\mathrm{O} \rightleftharpoons (\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2})_{4}(\mathrm{OH})_{7}^{+} + 7\mathrm{H}^{+}$	-21.900 ± 1.000

Table 1.2. Equilibrium constants (K_{hydro}°) for the hydrolysis of uranyl(VI) ion at 298.15 K, 0.1 MPa, and zero ionic strength^{12, 13})

^a Logarithmic equilibrium constant of the hydrolysis of uranyl(VI) ion at 298.15 K,

0.1 MPa, and zero ionic strength.

hydrolytic reactions of uranyl(VI) have been exhaustively studied. Grenthe *et al.* have summarized a series of the equilibrium constants of the hydrolysis of the uranyl(VI) ion as shown in Table 1.2.^{12,13)} In this table, the largest value of log K_{hydro}° is -2.700 ± 1.000 of the reaction: $2U^{VI}O_2^{2+} + H_2O \rightleftharpoons (UO_2)_2(OH)^{3+} + H^+$. This data suggests that the hydrolysis of the uranyl(VI) ion will start from pH 3–4.

A very large number of inorganic and organic anions and electron donating neutral molecules coordinate to the uranyl(VI) ion by strong (probably covalent) bonds to form uranyl(VI) complexes. Normally, such ligands are positioned in the equatorial plane of the uranyl(VI) ion. The number of coordination sites in the equatorial plane of the uranyl(VI) ion varies from 3 to 6 as shown in Figure 1.4. In these geometries, the pentagonal and hexagonal bipyramidal ones are most popular. The simplest uranyl(VI) complex is its hydrated perchlorate salt; $U^{VI}O_2(CIO_4)_2 \cdot nH_2O$. The crystal structures of $U^{VI}O_2(CIO_4)_2 \cdot nH_2O$ (n = 5, 7) were analyzed by Alcock *et al.*¹⁴⁾ and refined by Fischer.¹⁵⁾ In their reports, the linear uranyl(VI) ion was surrounded by 5 water molecules, *i.e.*, the geometry of this uranyl(VI)aqua complex is pentagonal bipyramidal. Interestingly, Fischer has also found that the perchlorate anion (CIO_4^-) , which is generally known to have little coordination ability to metal ions, can also interact with the uranyl(VI) ion. The resulting pentagonal bipyramidal complex is $U^{VI}O_2(CIO_4)_2(H_2O)_3$. The uranyl(VI) are, for example, β -diketonates,¹⁶⁻²²⁾ Schiff bases,²³⁻³⁹⁾ phthalocyanines,^{40,41)} macrocycles,⁴²⁻⁴⁹⁾ and so on.

Figure 1.4. Schematic geometries of uranyl(VI) complexes.

Figure 1.5. Structure of $U^{VI}O_2(NO_3)_2(NCP)_2$ (NCP = *N*-cyclohexyl-2-pyrrolidone) drawn as thermal ellipsoid plot at 40% probability level reported by Varga *et al.*⁵⁸⁾

Traditionally, a series of the uranyl(VI) nitrates have been studied in detail, because this species is quite important in the nuclear engineering, especially in the purification of uranium to prepare the nuclear fuel and to reprocess the spent fuel from the power plant. The comprehensive review in such an engineering field was published previously.⁵⁰⁾ In this field, the uranium species is normally purified by using the solvent extraction in the hydrocarbon/HNO₃ aq. biphasic system from the crude materials, and the most popular extractant is tri-*n*-butyl-phosphate (TBP), which works as shown in Eq. 1.7.

$$U^{VI}O_2^{2+}(aq) + 2NO_3^{-}(aq) + 2TBP(aq) \rightleftharpoons U^{VI}O_2(NO_3)_2(TBP)_2(org)$$
(1.7)

More chemically detailed review was written by Casellato et al.⁵¹ The authors' focus was especially in the molecular structures and vibrations of the actinide nitrates. According to them and the references in this review, the nitrate anion (NO_3^-) generally coordinates to the uranyl(VI) ion as a bidentate ligand, resulting the hexagonal bipyramidal uranyl(VI) nitrate complexes as shown in Figure 1.4. When two NO_3^- coordinate to the uranyl(VI) ion, this uranyl(VI) nitrate complex has more two unidentate ligands e.g., H_2O_1 , $(U^{VI}O_2(NO_3)_2(H_2O_2)_2)$ at trans-position in the hexagonal equatorial plane. From some structural characterizations for $U^{VI}O_2(NO_3)_2L_2$ (L = tri-*n*-butylphosphine oxide, di-*n*-butylphosphate, trimethylphosphate, triisobutylphosphate),^{52–55)} the resulting $U^{VI}O_2(NO_3)_2(TBP)_2$ in Eq. 1.7 is also considered to have such a trans-geometry. Auwer et al. have studied the coordination sphere in various U, Np, and Pu nitrates in HNO₃ aqueous solution containing TBP with X-ray absorption spectroscopy, in which the oxidation states of these actinoid elements were VI for U, Np, and Pu and IV for Np and Pu.⁵⁶⁾ In their analyses for the X-ray absorption spectra, each actinyl(VI) ion coordinates two NO₃⁻ and two TBP molecules. Recently, Varga et al. have found the new unidentate ligand for the uranyl(VI) nitrate, N-cyclohexyl-2-pyrrolidone (NCP), which functions as a selective precipitant for the uranyl(VI) ion from its nitric acid aqueous solution.^{57,58)} The molecular structure of U^{VI}O₂(NO₃)₂(NCP)₂ determined by the X-ray crystallography is shown in Figure 1.5. The selectivity of NCP and its derivatives to the uranyl(VI) ion rather than other metal ions and their capabilities as precipitants in the reprocessing process have been confirmed by Koshino et al.⁵⁹⁾

One of the environmentally important uranyl(VI) complex is the carbonate, because of the sufficiently high concentration of CO_3^{2-} in natural environment and the large stability

of this complex. The equilibrium constants for the formation of the uranyl(VI) carbonate complexes at 298.15 K, 0.1 MPa, and zero ionic strength are shown below.¹³⁾

$$U^{VI}O_{2}^{2+} + CO_{3}^{2-} \stackrel{K_{1}}{\longleftrightarrow} U^{VI}O_{2}(CO_{3})(aq)$$

$$\log K_{1}^{\circ} = 9.940 \pm 0.030$$
(1.8)

$$U^{VI}O_{2}^{2+} + 2CO_{3}^{2-} \stackrel{\beta_{2}}{\longleftrightarrow} U^{VI}O_{2}(CO_{3})_{2}^{2-}$$

$$\log \beta_{2}^{\circ} = 16.610 \pm 0.090$$
(1.9)

$$U^{VI}O_{2}^{2+} + 3CO_{3}^{2-} \stackrel{\beta_{3}}{\longleftrightarrow} U^{VI}O_{2}(CO_{3})_{3}^{4-}$$

$$\log \beta_{3}^{\circ} = 21.840 \pm 0.040$$
(1.10)

From these data, the third stepwise formation constant of $U^{VI}O_2(CO_3)_2^{2-} + CO_3^{2-} \rightleftharpoons [U^{VI}O_2(CO_3)_3]^{4-}$ is calculated as $\log K_3^{\circ} = 5.230 \pm 0.037$. This $\log K_3^{\circ}$ value indicates that the major species of the uranyl(VI) carbonate under a condition with a presence of sufficient amount of CO_3^{2-} is $[U^{VI}O_2(CO_3)_3]^{4-}$. An ORTEP view of $K_4[U^{VI}O_2(CO_3)_3]$ reported by Brittain *et al.*⁶⁰⁾ is shown in Figure 1.6. The uranium atom in $[U^{VI}O_2(CO_3)_3]^{4-}$ is surrounded by the hexagonal bipyramidal coordination environment. In Figure 1.6, the R_{UO} value is 1.80 Å close to its average and U–O(1), U–O(2), and U–O(3) distances in its equatorial plane is 2.43 Å. To neutralize the highly negative charge of $[U^{VI}O_2(CO_3)_3]^{4-}$, the counter cations are located in interconnected vacancies between the coordinated CO_3^{2-} , and as a result, forming continuous chains. Such a phenomenon is also confirmed in the crystal structures of Na₂Ca[$U^{VI}O_2(CO_3)_3$]· xH_2O by Coda *et al.*⁶¹⁾, Cs₄[$U^{VI}O_2(CO_3)_3$] by Mereiter.⁶²⁾ Differing from most other heavy metal carbonates, sodium salt of $[U^{VI}O_2(CO_3)_3]^{4-}$ is water-soluble. Therefore, the sodium salt of $[U^{VI}O_2(CO_3)_3]^{4-}$ is important for the separation of the uranium from ores.

Figure 1.6. ORTEP view of $K_4 U^{VI}O_2(CO_3)_3$ reported by Brittain *et al.*⁶⁰⁾

Generally, the axial oxygen of the uranyl(VI) ion is quite inert in acidic aqueous media unless irradiated by UV light.^{6, 63)} Gordon and Taube proposed that the exchange reaction between the oxygen atoms of the uranyl(VI) ion and water in 1 M (= mol·dm⁻³) perchloric acid solution is catalyzed by the uranyl(V) ion (U^VO₂⁺) generated by UV irradiation as follows.

$$\mathrm{UO}_{2}^{2+} + \mathrm{e}^{-} \xrightarrow{h\nu} \mathrm{UO}_{2}^{+} \tag{1.11}$$

$$\mathrm{UO}_2^+ + \mathrm{H}_2\mathrm{O}^* \longrightarrow \mathrm{UO}_2^{*+} + \mathrm{H}_2\mathrm{O} \tag{1.12}$$

$$UO_2^{*+} + UO_2^{2+} \longrightarrow UO_2^{+} + UO_2^{*2+}$$
 (1.13)

where O^{*} denotes the isotope labeled oxygen atom. The half-life for the axial oxygen in the uranyl(VI) ion in 1 M HClO₄ aq. was estimated as 40000 h. On the other hand, Clark et al. has found that the axial oxygen in the uranyl(VI) ion can easily exchange with the water oxygen in 3.5 M tetramethylammonium hydroxide.⁶⁴⁾ In such a medium, the major uranyl(VI) species is $U^{VI}O_2(OH)_n^{(2-n)}$ (n = 4, 5). They analyzed the ¹⁷O NMR spectra of this sample solution at different temperatures by using NMR line-broadening method,⁶⁵⁾ and obtained the activation enthalpy (ΔH^{\ddagger}) , entropy (ΔS^{\ddagger}) , and the apparent first-order rate constant (k_{ex}) of the oxygen exchange reaction in this basic medium as $\Delta H^{\ddagger} = 41 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = -75 \pm 17 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $k_{\text{ex}} = 18 \pm 6 \text{ s}^{-1}$ at 283 K. For the significant acceleration of the oxygen exchange between the uranyl(VI) ion and water in the basic aqueous media, Clark et al. have proposed two mechanisms; (1) direct mechanism in which the proton in the coordinated OH⁻ transfers to the axial oxygen, (2) water assisted mechanism in which one of the protons in the water molecule binding to the coordinated OH⁻ through a hydrogen bond transfers to the axial oxygen. In nonaqueous solvents, the axial oxygen is generally considered to be stable, because the v_3 peak due to the uranyl(VI) moiety can be observed even in the IR spectrum of such a system.

On the other hand, the exchange reaction of the equatorial ligands of the uranyl(VI) complexes may occur more readily than that of the axial oxygen atoms. To investigate such an exchange reaction in the uranyl(VI) complexes, the NMR spectroscopy has been used frequently.^{66–82)} Fratiello et al. have estimated lifetimes of the water molecule coordinating to the uranyl(VI) ion in water-acetone and water-dimethyl sulfoxide-acetone mixtures as ca. 5×10^{-3} s.^{66,67)} Ikeda *et al.*⁶⁸⁾ also studied the H₂O exchange reaction in the uranyl(VI) aqua complex in mixtures of water, acetone, and/or DMSO (dimethyl sulfoxide), and obtained the first-order rate constant $(k_{\rm H_2O} = 9.80 \times 10^5 \text{ s}^{-1} \text{ at } 298 \text{ K})^1$ and activation parameters $(\Delta H^{\ddagger} =$ $41.4 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = 8 \pm 11 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$). In the reports by Fratiello *et al.*,^{66,67)} the hydration number in the uranyl(VI) agua complex has been evaluated as 4 from the peak area in the ¹H NMR spectra. In these literatures, the authors mentioned "The addition of acetone procudes a reduction of the dielectric constant of the medium, eventually to that of acetone, about 20 at 25°C, at high concentrations of this component. Even though the ¹H NMR measurements are made at -85 to -100° C, the bulk dielectric constant should still be only about 35, a much lower value than that of pure water. Thus, if inner-shell complex formation is induced in solution, a decrease in the cation hydration number should be noted." Actually, the hydration number in the crystal structure of the perchlorate salt was determined as 5, *i.e.*, $U^{VI}O_2(H_2O)_5^{2+.14,15}$ Bardin *et al.* have also estimated the hydration number surrounding the uranyl(VI) ion in the H_2O /acetone mixture as 5 from the ¹H NMR spectrum.⁷⁵⁾ They considered that such a difference between the hydration numbers estimated from the NMR

¹This rate constant was calculated for $U^{VI}O_2(H_2O)_4^{2+}$ by Ikeda *et al.*⁶⁸⁾

20

peak area should be caused by the accuracy of the measurements, *i.e.*, the higher magnetic field instruments (300 and 400 MHz) used by Bardin *et al.* would produce more accurate result than the previous ones^{66–68)} (maximum 200 MHz). The first-order rate constant at 298 K and activation parameters in the exchange reaction of water molecule in U^{VI}O₂(H₂O)²⁺₅ evaluated by Bardin *et al.* fluctuated as $k_{H_2O} = 10^4 \sim 10^5 \text{ s}^{-1}$, $\Delta H^{\ddagger} \approx 30 \text{ kJ} \cdot \text{mol}^{-1}$, and $\Delta S^{\ddagger} \approx 19 \text{ or 800 J} \cdot \text{mol}^{-1} \text{K}^{-1}$.⁷⁵⁾ Farkas *et al.* further investigated the H₂O exchange reaction in U^{VI}O₂(H₂O)²⁺₅ from ¹⁷O NMR spectra measured by the 500 and 800 MHz instruments, and obtained the first-order rate constant ($k_{H_2O} = (1.30 \pm 0.05) \times 10^6 \text{ s}^{-1}$ at 298 K) and the activation parameters ($\Delta H^{\ddagger} = 26.1 \pm 1.4 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = -40 \pm 5 \text{ J} \cdot \text{mol}^{-1} \text{K}^{-1}$).⁷⁶⁾ Additionally, they also performed the quantum chemical calculation for the uranyl(VI) aqua complexes and combined the experimental and theoretical results. Recently, Vallet *et al.* estimated the energies of the activation and the intermediate in the water exchange reaction of U^{VI}O₂(H₂O)²⁺₅ by using the quantum chemical calculation.⁸³⁾ Their results suggested that such a reaction in U^{VI}O₂(H₂O)²⁺₅ proceeds through the associative mechanism in which the additional ligand (water) will bind to U^{VI}O₂(H₂O)²⁺₅ in the intermediate.

Tóth *et al.* have studied the CO_3^{2-} exchange reaction in $[U^{VI}O_2(CO_3)_3]^{4-}$ by using ¹³C NMR spectroscopy.⁷¹⁾ According to their result, the CO_3^{2-} exchange reaction in $[U^{VI}O_2-(CO_3)_3]^{4-}$ occurs *via* the dissociative mechanism in which the coordination number of the ligand will decrease in the intermediate, that is, the intermediate should be $[U^{VI}O_2(CO_3)_2]^{2-}$ as follows.

$$[U^{VI}O_2(CO_3)_3]^{4-} \underset{k_{-1}}{\overset{k_1}{\longleftrightarrow}} [U^{VI}O_2(CO_3)_2]^{2-} + CO_3^{2-}$$
(1.14)

The estimated values of ΔH^{\ddagger} , ΔS^{\ddagger} , and k_1 of Eq. 1.14 were $82 \pm 11 \text{ kJ} \cdot \text{mol}^{-1}$, $50 \pm 30 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $13 \pm 3 \text{ s}^{-1}$, respectively. The k_{-1} value was derived from the relationship, $k_{-1} = K_3 k_1$, resulting $k_{-1} \simeq 10^7 \text{ M}^{-1} \cdot \text{s}^{-1}$ In the further investigation by Tóth *et al.*,⁷²⁾ it was found that there is the second path involving H⁺ other than Eq. 1.14. The proton-catalyzed CO₃^{2–} dissociation from $[U^{\text{VI}}O_2(\text{CO}_3)_3]^{4-}$ was proposed for an alternative path.

The exchange reactions of unidentate ligands (L) in the uranyl(VI) complexes, $U^{VI}O_2(L)_5^{2+}$ and $U^{VI}O_2(\beta$ -diketonato)₂L (L = *N*,*N*-dimethylformamide, *N*,*N*-dimethylacetoamide, *N*,*N*-diethylformamide, trimethyl phosphate, triethyl phosphate, dimethyl sulfoxide, tetrahydrofuran; β -diketonato = acetylacetonato, 1,1,1,1-trifluoroacetylacetonato, 1,1,1,5,5,5-hexafluoroacetylacetonato) in nonaqueous solvents have also been investigated and discussed the details concerning the rate constants and mechanisms.^{69, 70, 78–82}

For the properties of the actinul ions and related species, many kinds of studies, not only experimental, but also theoretical and computational, have been reported.^{3,4,10,84–116)} According to Denning *et al.*³⁾ and Matsika *et al.*⁴⁾, the ground state of the uranyl(VI) ion is,

$$(1\pi_u)^4 (1\pi_g)^4 (1\sigma_g^+)^2 (1\sigma_u^+)^2; \ ^1\Sigma_g^+$$
(1.15)

In this configuration of the uranyl(VI) ion at the ground state, it is unusual that the energy levels of the occupied σ MOs are higher than those of the occupied π MOs. This phenomenon has been explained by anti-bonding overlap between the σ -oriented oxygen $2p_z$ orbitals and the toroidal lobes of the uranium $6d_{z^2}$ and $5f_{z^3}$ orbitals.³⁾

Essentially, uranyl(VI) compounds have intense yellow color. This is considered to be due to the following electronic excitation in the uranyl(VI) ion.

$$(1\pi_u)^4 (1\pi_g)^4 (1\sigma_g^+)^2 (1\sigma_u^+)^2; \ ^1\Sigma_g^+ \longrightarrow (1\pi_u)^4 (1\pi_g)^4 (1\sigma_g^+)^2 (1\sigma_u^+)^1 (\phi_u, \, \delta_u)^1; \ ^1\Phi_g \text{ or } ^1\Delta_g$$
(1.16)

Figure 1.7. UV-visible absorption spectrum of uranyl(VI) perchlorate in 1-butyl-3-methylimidazolium nonafluorobutanesulfonate ionic liquid at room-temperature.¹¹⁷⁾

This transition is classified into the ligand-to-metal charge transfer (LMCT) from the 2p orbitals in the axial oxygen atom to the 5f δ_u and/or ϕ_u orbitals in the center uranium. The typical absorption spectrum of the uranyl(VI) ion is shown in Figure 1.7.¹¹⁷⁾ As can be seen from this spectrum, the absorption bands due to such LMCT in the uranyl(VI) ion appear at 350~500 nm with vibronic structures. The excited states (configuration) in this transition are predicted as ${}^{1}\Phi_{g} (\sigma_{u}\phi_{u})$ or ${}^{1}\Delta_{g} (\sigma_{u}\delta_{u})$. These LMCT transitions, ${}^{1}\Sigma_{g}^{+} \rightarrow {}^{1}\Phi_{g}$ and ${}^{1}\Sigma_{q}^{+} \rightarrow {}^{1}\Delta_{g}$ are spin-allowed, but forbidden because of the transitions between the energy states with same parity $(g \rightarrow g, g; \text{gerade})$. Therefore, the molar absorptivity $(\epsilon; M^{-1} \cdot \text{cm}^{-1})$ of the LMCT absorption bands is low $(0.3 \sim 20 \text{ M}^{-1} \cdot \text{cm}^{-1})$ and their intensities should be borrowed from the vibrinic coupling. Görller-Walrand and Vanquickenborne discussed which coupling scheme is suitable to describe the spin-orbit effect in the uranyl(VI) ion. In their conclusion, a molecular Russell-Saunders $((\Lambda, S))$ coupling scheme is most appropriate, and other schemes ((ω , ω) and intermediate) cannot rationalize the energy splittings and the spectral intensities. Görller-Walrand et al.^{95,96)} and McGlynn et al.⁸⁴⁾ reported that a large number of the uranyl(VI) complexes with widely different ligands, coordination numbers, and symmetries exhibits remarkably similar LMCT absorption bands, and concluded that the perturbation order in the uranyl(VI) compounds is,

$$V_{\rm ax} \gg e^2 / r_{ij} \ge H_{\rm SO} > V_{\rm eq} \tag{1.17}$$

where V_{ax} , e^2/r_{ij} , H_{SO} , and V_{eq} are the axial ligand field potential, the electrostatic potential, the spin-orbit hamiltonian, and the equatorial ligand field potential, respectively.

Today, comprehensive reviews for the physical and chemical properties of various uranyl(VI) compounds are available, for example, "*The Chemistry of the Actinide Elements*" by Katz *et al.*¹⁾ and "*Chemical Thermodynamics of Uranium*" by Grenthe *et al.*¹²⁾ These reviews are summarizing not only for uranyl(VI), however even limiting in the uranyl(VI) species, their ranges are quite vast.

1.3 Actinul Ions with 5f¹ Configuration

Uranyl(VI), which is the most popular actinyl ion as described above, has no unpaired electron in its 5f orbital. Therefore, in the study on the uranyl(VI) species, it is not possible to observe the properties caused by the 5f electron directly. In the actinyl ions, uranyl(V) $(U^VO_2^+)$, neptunyl(VI) $(Np^{VI}O_2^{2+})$, and plutonyl(VII) $(Pu^{VI}O_2^{3+})$ have $[Rn]5f^1$ configuration, which is the simplest electronic configuration in $5f^n$ system. Thus, these species are most essential for the systematic interpretation for the properties of whole actinyl species with $5f^n$ configuration. From Figures 1.1 and 1.2, the 5f orbitals being free from the interaction with the 2p orbitals in the axial oxygen atoms are $5f\phi_u$ and $5f\delta_u$. Hence, the unpaired electron in the *bare* actinyl ions with the $5f^1$ configuration should be located in one of these non-bonding 5f orbitals, *i.e.*, its predicted ground state is,

$$(1\pi_u)^4 (1\pi_g)^4 (1\sigma_g^+)^2 (1\sigma_u^+)^2 (\delta_u)^1; ^2\Delta_u$$
(1.18)

$$(1\pi_u)^4 (1\pi_g)^4 (1\sigma_g^+)^2 (1\sigma_u^+)^2 (\phi_u)^1; {}^2\Phi_u$$
(1.19)

It may be expected that the $5f\delta_u$ orbital is positioned lower in energy than $5f\phi_u$, because the former (δ : $\lambda = 2$) has the lower angular momentum around the *z* axis than latter (ϕ : $\lambda = 3$). In fact, according to the quantum chemical calculation by Matsika *et al.*,⁴⁾ the $5f\delta_u$ orbital is located at slightly lower energy level than $5f\phi_u$ as shown in Figure 1.3. However, their positions may invert with the equatorial ligand field and/or the spin-orbit coupling. Actually, the electronic configuration of a neptunyl(VI) compounds, NaNp^{VI}O₂(CH₃COO)₃ and RbNp^{VI}O₂(NO₃)₃, was determined as ${}^{2}\Phi_{5/2u}$ (Eq. 1.19) by experimental values of their magnetic susceptibilities.⁸⁹

1.3.1 Uranyl(V) ion; $U^VO_2^+$

The pentavalent state is the most unstable oxidation state of uranium in solution.¹⁾ In order to observe the uranyl(V) species, electrochemical and photochemical reduction of uranyl(VI) to uranyl(V) were attempted by many researchers.^{118–153)} However, the uranyl(V) species are generally unstable in acidic aqueous system, because of the disproportionation (Eq. 1.20).^{120–124)}

$$2U^{V}O_{2}^{+} + 4H^{+} \rightleftharpoons U^{4+} + U^{VI}O_{2}^{2+} + 2H_{2}O$$
(1.20)

The following mechanism has been suggested for Eq. 1.20.

$$U^{V}O_{2}^{+} + H^{+} \longrightarrow UOOH^{2+}$$
(1.21)

$$U^{V}O_{2}^{+} + UOOH^{2+} \longrightarrow U^{VI}O_{2}^{2+} + UOOH^{+}$$
(1.22)

$$UOOH^+ \longrightarrow stable U(IV)$$
 (1.23)

The rate-determining step is considered to be Eq. 1.22. The logarithmic equilibrium constant of Eq. 1.20 has been evaluated as 6.23 ± 0.08^{154} and 6.07 ± 0.06^{12} which are quite larger than that of the corresponding disproportionation of neptunyl(V), -6.40 in 1 M HClO₄ and -1.62 in 1 M H₂SO₄.¹⁾ Furthermore, one must consider the pH region in which these uranium species are stable towards their hydrolyses. According to Kraus *et al.*,^{118,119)} the optimum pH range for stable presence of the uranyl(V) species in aqueous solution is from 2 to 4, which is narrower than that of plutonyl(V) (pH = 2~6). Due to the unusual instability of the uranyl(V) species, any data have not been accumulated systematically.

Sipos and co-workers have studied the electrochemical reaction mechanism of uranyl(VI), uranyl(V), U⁴⁺, and U³⁺ ions in perchloric acid aqueous solutions by using polarography and cyclic voltammetry.¹²⁶⁾ They proposed the reaction mechanisms including the disproportionation in acidic aqueous system (Eq. 1.20). Even in nonaqueous system, Gritzner and Selbin¹²⁹⁾ reported that a brown colloidal precipitate expected as UO₂ was produced after the reduction of uranyl(VI) to uranyl(V) in dimethyl sulfoxide (DMSO). Ikeda and co-workers have studied the electrochemical properties of $[U^{VI}O_2(L)_5]^{2+}$ (L = DMSO, *N,N*-dimethyl-formamide (DMF)), U^{VI}O₂(β -diketonato)₂L (β -diketonato = acetylacetonato, 1,1,1-trifluoro-acetylacetonato, 1,1,1,5,5,5-hexafluoroacetylacetonato, thenoyltrifluoroacetonato, benzoyl-trifluoroacetonate, and dibenzoylmethanato), and U^{VI}O₂(salen)L (salen = *N,N*'-disalicylidene-ethylenediaminato) in L as solvent.¹⁴⁰⁻¹⁴³⁾ As a result, they have proposed that the uranyl(V) complexes including multidentate ligand(s) can exist more stably than those having only unidentate ones. However, there are no reports of the nonaqueous system of the stable uranyl(V) species.

The attempts to clarify the spectroscopic properties of uranyl(V) species in aqueous media¹²⁷⁾ and organic solvents have been performed previously.^{129–135)} Such studies suggested that the uranyl(V) species have characteristic absorption bands at around 750, 950, and 1500 nm in visible and near infrared regions. However, the sample solutions in these reports were mixtures of uranium(IV), uranyl(V), and uranyl(VI) species, and the absorption bands of uranyl(V) were assigned only by comparing the absorption spectra of such sample solutions with those of uranium(IV) and uranyl(VI).

On the other hand, it has been known that some uranyl(V) species might be produced stably in molten alkali and alikaline-earth chloride mixtures.^{144, 145)} Adams *et al.* reported that the uranyl(V) species in LiCl–KCl, LiCl–MgCl₂, and NaCl–KCl–MgCl₂ eutectics show similar electronic spectra at around 690, 870, and 1510 nm.¹⁴⁴⁾ Furthermore, Khokhryakov also observed that the uranyl(V) species in CsCl–NaCl and NaCl–KCl melts have absorption bands at around 615, 715, and 1560 nm and tried to assign them.¹⁴⁵⁾ However, the structures of the uranyl(V) species in these molten salt systems have not been identified. Although the knowledges of the spectrum of the pure uranyl(V) species and its exact structure are necessary to interpret its electronic spectrum, the spectroscopic properties of the uranyl(V) species are still uncertain.

A uranyl(V) carbonato complex in basic carbonate aqueous solutions is known as only one system that the uranyl(V) complex can exist stably.^{147–153)} This system was found by Cohen.¹⁴⁷⁾ According to his report, the uranyl(V) species is stable in the aqueous system at pH \geq 11 and Na₂CO₃ \geq 1 M. Ferri *et al.* have determined the stoichiometry of CO₃^{2–} per uranyl(V) ion in this complex by using a potentiometric titration.¹⁴⁹⁾ The result was 3, *i.e.*, its chemical formula is [U^VO₂(CO₃)₃]^{5–}. The logarithmic formation constant of Eq. 1.24 was evaluated as log $\beta_3^{\circ} = 6.950 \pm 0.360.^2$

$$\mathbf{U}^{\mathbf{V}}\mathbf{O}_{2}^{+} + 3\mathbf{C}\mathbf{O}_{3}^{2-} \stackrel{\beta_{3}}{\longleftrightarrow} \left[\mathbf{U}^{\mathbf{V}}\mathbf{O}_{2}(\mathbf{C}\mathbf{O}_{3})_{3}\right]^{5-}$$
(1.24)

According to a study of extended X-ray absorption fine structure (EXAFS) by Docrat *et al.*,¹⁵³⁾ the structure of $[U^VO_2(CO_3)_3]^{5-}$ can be considered to be similar to that of $[U^{VI}O_2-(CO_3)_3]^{4-}$, *i.e.*, the coordinated CO_3^{2-} in $[U^VO_2(CO_3)_3]^{5-}$ are equivalent each other. Cohen

²This is the corrected value at 298.15 K, 0.1 MPa, and zero ionic strength from the most recent report, "*Up-date on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium*"¹³⁾. The original value of $\log \beta_3$ reported in *Inorg. Chem.* **1983**, 22, 3162–3165. is 13.3±0.4 in 3 M NaClO₄ aq.¹⁴⁹⁾

has also reported that $[U^VO_2(CO_3)_3]^{5-}$ shows its characteristic absorption bands at around 765, 980, and 1120 nm in visible-NIR region, and that the solution of $[U^VO_2(CO_3)_3]^{5-}$ is almost colorless.¹⁴⁷⁾ Mizuguchi and co-workers have measured the UV-visible absorption spectra of $[U^VO_2(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$ redox couple (Eq. 1.25)³ at various potentials with spectroelectrochemical technique.¹⁵²⁾

$$[U^{VI}O_{2}(CO_{3})_{3}]^{4-} + e^{-} \rightleftharpoons [U^{V}O_{2}(CO_{3})_{3}]^{5-}$$
(1.25)

As a result, the decolorization with the reduction from $[U^{VI}O_2(CO_3)_3]^{4-}$ to $[U^VO_2(CO_3)_3]^{5-}$ was spectrophotometrically confirmed as the disappearance of the LMCT absorption bands of $[U^{VI}O_2(CO_3)_3]^{4-}$ at around 450 nm. Unfortunately, the electronic spectrum of $[U^VO_2(CO_3)_3]^{5-}$ in the wavelength region longer than 1350 nm has not been observed, because of the strong absorption of H₂O as the solvent. Since no stable uranyl(V) species with identified structures other than $[U^VO_2(CO_3)_3]^{5-}$ are known, the spectroscopic properties of the uranyl(V) complexes cannot be discussed systematically.

The structural properties of the uranyl(V) species are also uncertain. With the reduction from uranyl(VI) to uranyl(V), it has been predicted theoretically that the U=O bond distance (R_{UO}) lengthens about 0.05~0.08 Å, and that the v_1 and v_3 stretching in the uranyl moiety show red-shifts.^{108,110)} In fact, Docrat *et al.* have clarified that the R_{UO} value increases with the reduction of $[U^{VI}O_2(CO_3)_3]^{4-}$ (1.80 Å) to $[U^{V}O_2(CO_3)_3]^{5-}$ (1.90 Å) in their EXAFS study.¹⁵³⁾ Furthermore, Madic *et al.* have observed the red-shift of the v_1 peak in the Raman spectra with the reduction from $[U^{VI}O_2(CO_3)_3]^{4-}$ ($v_1 = 812 \text{ cm}^{-1}$) to $[U^{V}O_2(CO_3)_3]^{5-}$ ($v_1 =$ 759 cm⁻¹).¹⁵¹⁾ However, these structural data of the uranyl(V) species are limited only in $[U^{V}O_2(CO_3)_3]^{5-}$. Additionally, no data concerning the v_3 peak, which will be observed in IR spectra, are available.⁴ Jones and Penneman have studied the IR properties of the alternative actinyl(V/VI) species (neptunyl(V/VI) and americyl(V/VI)).¹⁵⁵⁾ They reported that the reduction from An^{VI}O₂⁺ to An^VO₂⁺ causes the red-shift of the v_3 peak of O=An=O, *i.e.*, An=O bond strength is weakened. The shifts for An = Np and Am are 145 and 107 cm⁻¹, respectively. Thus, in the case of An = U, it is expected that the v_3 peak in O=U=O is shifted to lower wavenumber by *ca.* 100~150 cm⁻¹ with the reduction from uranyl(VI) to uranyl(V).

On the other hand, some compounds containing $U^{V}X_{n}^{5-n}$ species (X = F, Cl, $OC_{2}H_{5}$; n = 5, 6), which have no axial oxygen atoms, have been reported previously, and Selbin and Ortego reviewed them.¹²⁵⁾ According to them, the $U^{V}X_{n}^{5-n}$ species have characteristic absorption bands in visible and NIR regions as shown in Figure 1.8. Generally, the crystal field surrounding the center uranium in the $U^{V}X_{n}^{5-n}$ species was treated as an octahedral one (O_{h}) .⁵ The electronic configuration, 5f¹, allows only the ²F_{5/2} and ²F_{7/2} term level which is split by spin-orbit coupling into two levels. Moreover, the crystal field in $U^{V}X_{n}^{5-n}$ will further

³Various formal potential ($E^{\circ\prime}$) values of Eq. 1.25 were reported such as -0.714, -0.730, -0.7459, -0.749, -0.815, and -0.859 V vs. Ag/AgCl, which were summarized by Grenthe *et al.* in "*Chemical Thermodynamics of Uranium*"¹²). In this thesis, the $E^{\circ\prime}$ value of Eq. 1.25 under the present experimental condition has been re-evaluated by using spectroelectrochemical technique. Details are in Section 3.1.

⁴Even for $[U^VO_2(CO_3)_3]^{5-}$, it should be difficult to measure its IR spectrum, because the solvent H₂O is a strong absorber of IR rays.

⁵Since there are no axial oxygens, the perturbation order shown in Eq. 1.17 cannot be applied. Therefore, the crystal fields surrounding the center uranium in $U^V X_n^{5-n}$ were treated by using O_h point group. Furthermore, the spin angular momentum of U^{5+} is half-integer (1/2) because of the 5f¹ configuration. This means that the introduction of "double group" is required in the discussion including both crystal field and spin-orbit coupling. Here, O_h^* (or O^*) double group corresponds to the O_h single group. Details are presented in Chapter 6.

Figure 1.8. Visible and near-infrared electronic absorption spectra of $U^V X_n^{5-n}$ species. Left: (a) $U^V Cl_5 \cdot SOCl_2$ in CCl₄ and (b) $[U^V (OC_2H_5)_5]_2$ in CCl₄. Right: $(C_3H_7)_4 NU^V Cl_6$ in SOCl₂.¹²⁵⁾

split the foregoing degenerate levels as follows.

$${}^{2}F_{5/2} \longrightarrow \Gamma_{7} + \Gamma_{8}$$
$${}^{2}F_{7/2} \longrightarrow \Gamma_{6} + \Gamma_{7}' + \Gamma_{8}'$$

Hence, one should predict at least four transitions to be possible in the $U^V X_n^{5-n}$ species, namely $\Gamma_7 \to \Gamma_8$, $\Gamma_7 \to \Gamma'_7$, $\Gamma_7 \to \Gamma'_8$, and $\Gamma_7 \to \Gamma_6$, in which the odd electron resides in the lowest Γ_7 level in the ground state. In Figure 1.8, not just four bands, but rather at least four groups of the absorption bands were observed. The additional bands were suggested to be the result of different vibronic transition and/or removal of the degeneracy arising from the lowering of the symmetry.⁶

Selbin and Ortego also included the matter of the uranyl(V) species in their review.¹²⁵⁾ However, they described that the knowledge of uranyl(V) is extremely limited and a great deal more work needs to be done before uranyl(V) may even be considered as well characterized. This was stated in 1969, but still now no sufficient information of uranyl(V) has been available.

1.3.2 Other 5f¹ Systems: Neptunyl(VI) and Plutonyl(VII)

The neptunyl(VI) $(Np^{VI}O_2^{2+})$ is one of the alternative $5f^1$ actinyl ions. Structural properties of the neptunyl(VI) ion are almost identical with those of uranyl(VI). On the other hand, the stability of the neptunyl(VI) ion is completely different from that of uranyl(V) in spite of the isoelectronic configuration. The neptunyl(VI) ion is stable in both acid and basic media. Thus, pure sample of the neptunyl(VI) species can be prepared and studied. The absorption

⁶Some of the pertinent theoretical predictions were predicted by the authors of the references in the review by Selbin and Ortego;¹²⁵⁾ (1) The doublet levels (Γ_7 , Γ'_7 , Γ_6) arising from Kramer's degeneracy are predicted to be stabilized by spin-orbit coupling and would be unaffected by Jahn-Teller distortions. (2) Jahn-Teller effects are important in the behavior of the quadruply degenerate Γ_8 leveles. These levels are predicted to split into two doublets when the octahedron distorts. The Γ_8 levels may also interact with the vibration modes. (3) Vibrational selection rules indicate that the totally symmetric vibrational mode, A_{1g} , can couple with the electronic transitions. (4) The odd vibrational modes of the molecule are predicted to couple most strongly with the electronic transitions.

Figure 1.9. Absorption spectrum of the neptunyl(VI) ion in 1 M $H(D)CIO_4$ aq. summarized by McGlynn and Smith.⁸⁹⁾

spectra of the neptunyl(VI) ion in HClO₄ aqueous solutions have been reported by Sjoblom et al.,¹⁵⁶⁾ Waggener,¹⁵⁷⁾ and Hagan et al.¹⁵⁸⁾ According to their papers, the neptunyl(VI) ion shows its characteristic absorption bands at around 1223 and 1480 nm in NIR region. Friedman and Toth have reported that the neptunyl(VI) ion in 0.1, 0.5, 1.0, and 4.0 M HNO₃ also has the characteristic bands at ca. 1200 nm, which does not show any significant dependences on the acid concentration.¹⁵⁹⁾ Figure 1.9 shows the typical absorption spectrum of the neptunyl(VI) ion in aqueous system summarized by McGlynn and Smith.⁸⁹⁾ According to their assignment, the neptunyl(VI) ion in 1 M H(D)ClO₄ aq. has the characteristic absorption bands due to f-f transition at ~2000 (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Delta_{3/2u}$), 6752 (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Phi_{7/2u}$), 8168 (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Delta_{5/2u}$), 18180 (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Pi_{1/2u}$), 21100 (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Pi_{3/2u}$), and ~24000 cm⁻¹ (${}^{2}\Phi_{5/2u} \rightarrow {}^{2}\Pi_{1/2u}$) ${}^{2}\Sigma_{\mu}^{+}$).⁷ Leung and Wong studied the absorption spectrum of the neptunyl(VI) ion doped into a $CsU^{VI}O_2(NO_3)_3$ single crystal cooled at liquid nitrogen or liquid helium temperature. They observed very complicated absorption peaks including Zeeman effects by Kramer's doublets in [Np^{VI}O₂(NO₃)₃]⁻, and assigned 6 peaks at 4802.9, 6212.1, 6220.8, 7185.2, 10613, 15480 cm⁻¹ to the f-f transitions in the neptunyl(VI) ion with 5f¹ configuration. Further investigations for the polarized absorption spectra of $[Np^{VI}O_2Cl_4]^{2-}$ and $[Np^{VI}O_2(NO_3)_3]^{-}$ doped into single crystals of the corresponding uranyl(VI) compounds were performed by Denning et al.^{101,102} They also reported that the absorption peaks attributable to the f-f transitions in the neptunyl(VI) ion appear at ~1000, 6880.4, ~7990, 17241.4, and 20080.8 cm⁻¹ for $[Np^{VI}O_2Cl_4]^{2-}$, and 6459.0, 9420.2, 17843.6, and 20816.3 cm⁻¹ for $[Np^{VI}O_2(NO_3)_3]^{-}$. Therefore, if the electronic spectrum of pure uranyl(V) species is recorded, it can be compared with those of the neptunyl(VI) species.

The plutonyl(VII) species is also isoelectronic with the uranyl(V). However, this species is presented only in the strongly basic aqueous system ($[OH^-] > 7 M$), and considered to exist as $Pu^{VII}O_5^{3-}$ rather than $Pu^{VII}O_2^{3+}$. The anion of plutonyl(VII) is a very powerful oxidizing agent, for example, it oxidizes water to oxygen when $[OH^-] < 7 M$. Available data concerning the properties of the plutonyl(VII) species is limited only in the characteristic absorption peak at 635 nm with $\epsilon = 530 M^{-1} \cdot cm^{-1}$.¹⁾

⁷Wavenumber ($\tilde{\nu}$ /cm⁻¹) and wavelength (λ /nm) have a relationship, $\tilde{\nu} = 10^7 / \lambda$.

1.4 Objectives in This Doctoral Thesis

As described above, the chemistry of uranyl(VI) is well understood, while that of uranyl(V) is almost unknown. However, the knowledges of basic properties of uranyl(V) must be essential to complete the actinoid chemistry, because uranyl(V) has the $5f^1$ electronic configuration which is simplest in the actinyl species with $5f^n$ configuration. Thus, the elucidation of the chemistry of uranyl(V) is the most important objective of this doctoral thesis.

The most probable candidate of the stable uranyl(V) complex is $[U^VO_2(CO_3)_3]^{5-}$, of which the stability has already been confirmed. Therefore, $[U^VO_2(CO_3)_3]^{5-}$ in the aqueous system was selected in this study. Based on the proposal by Ikeda et al., 140-143) N, N'-disalicylidene-o-phenylenediaminate (saloph) and dibenzoylmethanate (dbm) were selected as multidentate ligands expected to stabilize the urany(V) species in nonaqueous systems. The saloph ligand is one of the most popular tetradentate Schiff bases reported by Pfeiffer et al.²³⁾ It has been known that the uranyl(VI) complex coordinated with saloph generally contains a unidentate ligand (L). Indeed, Bandoli et al. reported a single crystal X-ray analysis for the uranyl(VI) complex with saloph and ethanol (EtOH); U^{VI}O₂(saloph)EtOH.²⁴⁾ To study the effect of L on the stabilities of [U^VO₂(saloph)L]⁻ complexes, two kinds of the uranyl(VI) saloph complexes with DMF and DMSO as L, U^{VI}O₂(saloph)DMF and U^{VI}O₂(saloph)DMSO, were prepared here. Moreover, to examine the effects of multidentate ligand type on the properties of the uranyl(V) and -(VI) complexes, dbm which is bidentate was used as an alternative ligand. The resulting uranyl(VI) dbm complex was U^{VI}O₂(dbm)₂DMSO. In this study, the electrochemical techniques were used to prepare the uranyl(V) complex from the uranyl(VI) one in both aqueous and nonaqueous systems. Therefore, the electrochemical redox behavior of each uranyl(VI) complex has been studied. Furthermore, to discuss the properties of the uranyl(V) complexes, it must be necessary to know those of the corresponding uranyl(VI) complexes. Hence, the characterizations of the uranyl(VI) complexes were also performed.

In this thesis, I have tried to elucidate the properties concerning molecular structures, electronic spectra, and reactivities of uranyl(V) and -(VI) complexes in aqueous and non-aqueous systems with an especial interest in uranyl(V). This doctoral thesis is composed by 7 chapters as follows.

Chapter 1 Introduction.

- **Chapter 2** Syntheses and characterizations of uranyl(VI) complexes, Na₄[U^{VI}O₂(CO₃)₃], U^{VI}O₂(saloph)DMF, U^{VI}O₂(saloph)DMSO, and U^{VI}O₂(dbm)₂DMSO, using single crystal X-ray analysis, IR (Raman) spectroscopy, and NMR spectroscopy.
- **Chapter 3** Spectroelectrochemistry of $[U^{VI}O_2(CO_3)_3]^{4-}$ in aqueous carbonate solution with an optical transparent thin-layer electrode cell and ligand exchange reaction of $[U^VO_2-(CO_3)_3]^{5-}$ using ¹³C NMR spectroscopy.
- **Chapter 4** Electrochemistries and spectroelectrochemistries of U^{VI}O₂(saloph)DMF, U^{VI}O₂-(saloph)DMSO, and U^{VI}O₂(dbm)₂DMSO in nonaqueous systems.
- **Chapter 5** Structural changes of uranyl moiety with reduction from U(VI) to U(V) using IR spectroelectrochemical technique.
- Chapter 6 Electronic spectra of uranyl(V) complexes.
- Chapter 7 Conclusion.

Chapter 2

Syntheses and Characterizations of Uranyl(VI) Complexes¹

¹In this chapter, the oxidation state of uranium in all compounds is VI. Thus, to simplify the writing, the superscript roman number indicating the oxidation state on U was abbreviated.

2.1 Na₄[UO₂(CO₃)₃]

2.1.1 Experimental Details

Synthesis of Na₄[**UO**₂(**CO**₃)₃]. Aqueous solution (10 ml) of UO₂(NO₃)₂·*n*H₂O (3.5 g) was mixed with saturated aqueous solution of Na₂CO₃ (50 ml, Kanto Chemical Co. Ind.). After the stirring at 80°C for 10 min, the mixture was cooled to room temperature. The yellow powder of Na₄[UO₂(CO₃)₃] was filtered off and washed with 40 vol.% EtOH aqueous solution.

Other Materials. Deuterium oxide (ACROS, 99.8 atom% D) and 13 C-enriched Na₂CO₃ (ISOTEC, 99 atom% 13 C) were used as received. All other chemical used in this section were of reagent grade.

Methods. Characterization of $Na_4[UO_2(CO_3)_3]$ was performed by using an IR spectrophotometer (SHIMADZU FTIR-8400S), a Raman spectrophotometer (JASCO RMP-200), a UV-visible absorption spectrophotometer (SHIMADZU UV-3150), and an NMR spectrometer (JEOL JNM-LA300WB FT NMR SYSTEM, ¹H: 300.4 MHz, ¹³C: 75.45 MHz).

2.1.2 Results and Discussion

An IR spectrum of the yellow product in KBr was measured by a diffuse reflectance method. The resulting IR spectrum was depicted by a black solid line in Figure 2.1. Characteristic peaks of CO_3^{2-} were observed at 703, 736 cm⁻¹ (ν_4), 1064 cm⁻¹ (ν_1) and 1348, 1560 cm⁻¹ (ν_3). These assignments were performed on the basis of the previous report by Nakamoto.¹⁶⁰⁾ Overlapping of two peaks at 829 and 852 cm⁻¹ was observed. The peak at 852 cm⁻¹ might be attributable to the O=U=O asymmetric stretching (ν_3) in the uranyl(VI) moiety, which usually appears in a region from 900 to 950 cm⁻¹. Thus, the peak at 852 cm⁻¹ might be too low to assign it to the ν_3 one of the uranyl(VI) moiety. On the other hand, these peaks also have possibility of the out-of-plane deformation (ν_2) of CO_3^{2-} in [UO₂(CO₃)₃]⁴⁻, because the ν_2 peak of CO_3^{2-} in its salts is observed in a region from 850 to 879 cm⁻¹.¹⁶⁰

Figure 2.1. Vibrational spectra of $Na_4[UO_2(CO_3)_3]$. Black line: IR, red line: Raman. Black dotted line is the Raman spectrum of Na_2CO_3 for a comparison.

Therefore, the presence of the uranyl(VI) ion in the yellow product cannot be concluded only from the IR spectrum.

Since the uranyl(VI) species also shows the O=U=O symmetric stretching (v_1) in a Raman spectrum, such a spectroscopy should be one of the good tool to confirm the presence of the uranyl(VI) ion in the product. The Raman spectrum of the yellow product was drawn by a red line in Figure 2.1 with that of Na₂CO₃ in a black dotted line. The characteristic peaks of CO₃²⁻ were also observed at 734, 702, and 693 cm⁻¹ (v_4), 1075 cm⁻¹ (v_1), and 1364 cm⁻¹ (v_3) for the product (red solid line) and 699 cm⁻¹ (v_4), 1079 cm⁻¹ (v_1), and 1421, 1430 cm⁻¹ (v_3) for Na₂CO₃ (black dotted line). The v_2 peak in CO₃²⁻ was not be detected in both Raman spectra. The assignments of these Raman peaks agree with those of the corresponding IR peaks (black solid line) and the Raman peaks reported previously.¹⁵¹⁾ The peak at 806 cm⁻¹ in the red line can be attributed to v_1 of the uranyl(VI) moiety in Na₄[UO₂(CO₃)₃]. This Raman peak is comparable with that observed in an aqueous solution (0.18 M UO₂²⁺, 2 M Na₂CO₃) at 812 cm⁻¹ by Madic *et al.*¹⁵¹⁾.

As a result, it is most likely to assign the IR peak at 852 cm⁻¹ to v_3 of the uranyl(VI) moiety and the other one at 829 cm⁻¹ to v_2 of CO₃²⁻ in Na₄[UO₂(CO₃)₃]. The similar overlapping was also observed in the systems of (gua)₄[UO₂(CO₃)₃], (gua)₂[UO₂(CO₃)₂], and (gua)₆[(UO₂)₃(CO₃)₆]·6.5H₂O (gua = C(NH₂)⁺₃, guanidinium cation) by Allen *et al.*¹⁶¹⁾ They reported that the uranyl(VI) v_3 peak was generally "masked" by the strong v_2 CO₃²⁻ out-of-plane deformation.

The presence of the uranyl(VI) ion could also be confirmed by means of the UV-visible absorption spectroscopy. The UV-visible absorption spectrum of an aqueous solution prepared by dissolving the yellow powder of Na₄[UO₂(CO₃)₃] (5.5 × 10⁻² M) and Na₂CO₃ (1.0 M) is shown in Figure 2.2. As can be seen from this figure, the characteristic absorption bands due to the charge transfer from the axial oxygen to the center uranium (LMCT) in the uranyl(VI) ion was observed at around 450 nm with a resolved vibronic structure. The spectral features and the molar absorptivities (ϵ) are comparable that of [UO₂(CO₃)₃]^{4–} reported

Figure 2.2. UV-visible absorption spectrum of the aqueous solution dissolving $Na_4[UO_2(CO_3)_3]$ (5.5×10⁻² M) and Na_2CO_3 (1.0 M).

Figure 2.3. ¹³C NMR spectrum of D₂O solution dissolving Na₄[UO₂(CO₃)₃] (4.09×10^{-2} M) and Na₂¹³CO₃ (5.74×10^{-1} M).

by Mizuguchi et al.¹⁵²⁾

Furthermore, the ¹³C NMR spectrum of a D₂O solution dissolving Na₄[UO₂(CO₃)₃] (4.09 × 10⁻² M) and Na₂¹³CO₃ (5.74 × 10⁻¹ M) was measured at room temperature. The resulting NMR spectrum is shown in Figure 2.3. The signals due to the free and coordinated CO₃²⁻ were detected at 169.10 and 168.48 ppm, respectively.^{71,72,162}) The area ratio indicates that the coordination number of CO₃²⁻ around the uranyl(VI) ion is 2.89 ± 0.03. In conclusion, the uranyl(VI) species exists as [UO₂(CO₃)₃]⁴⁻ even in the aqueous solution with the presence of the excess amount of free CO₃²⁻, which is obvious from its quite large stability constant (log $\beta_3 = 21.840 \pm 0.040$ at I = 0).¹³

2.2 UO₂(saloph)DMF

2.2.1 Experimental Details

Synthesis of UO₂(**saloph**)**DMF.** Ethanol (EtOH) solution of *o*-phenylenediamine (5.4 g, Kanto) was mixed with hot ethanol solution containing salicylaldehyde (11.72 g, Aldrich, 98%). This mixture was stirred and refluxed at 78°C for 3 h. The resulting orange precipitate of *N*,*N*'-disalicylidene-*o*-phenylenediamine (H₂saloph, see Figure 2.4) was filtered off, and washed with EtOH. This product was recrystallized from ethyl acetate. The EtOH solution containing $UO_2(NO_3)_2 \cdot nH_2O$ (2.0 g) was added to the hot EtOH solution containing H₂saloph (1.3 g) under vigorous stirring. The mixture was refluxed for 2 h at 78°C, and cooled at -18°C for 1 week. The orange precipitate of $UO_2(saloph)EtOH$ was filtered off and washed with EtOH. The $UO_2(saloph)EtOH$ (0.3 g) was dissolved in *N*,*N*-dimethylformamide (4 ml, DMF, Kanto). The solution was heated at 80°C with stirring for 3 h. The excess DMF was removed by evaporation at 100°C under vacuum. The deposited orange needle crystals of $UO_2(saloph)DMF$ were filtered off and washed with mixture of dichloromethane and ether (1 : 4 vol.). Single crystals of $UO_2(saloph)DMF$ in a mixed solvent of dichloromethane and DMF.

Synthesis of $[UO_2(saloph)]_2$. Dichloromethane solution dissolving UO₂(saloph)DMF or UO₂(saloph)DMSO (see Section 2.3) was concentrated by slow evaporation of the solvent at ambient condition until crystals of $[UO_2(saloph)]_2$ deposited. The resulting crystals of $[UO_2(saloph)]_2$ were suitable for the single crystal X-ray analysis.

Figure 2.4. Schematic structure of N,N'-disalicylidene-o-phenylenediamine (H₂saloph).

Other Materials. Dichloromethane- d_2 (ACROS, 99.8 atom% D) and chloroform-d (ACROS, 99.8 atom% D) were used for NMR measurements without further purification. All other chemicals used were of reagent grade.

Methods. Characterizations of $UO_2(saloph)DMF$ and $[UO_2(saloph)]_2$ were performed by using the IR spectrophotometer, NMR spectrometer, and single crystal X-ray diffractmeter (Rigaku RAXIS RAPID).

Details in Single Crystal X-ray Analyses. The single crystal X-ray analyses for UO_2 -(saloph)DMF and $[UO_2(saloph)]_2$ were performed with the following procedure. Single crystal of each uranyl(VI) complex was mounted on a glass fiber, and put into the low temperature nitrogen gas flow. Intensity data were collected by using imaging plate area detector in

Rigaku RAXIS RAPID with graphite monochromated Mo-K α radiation ($\lambda = 0.71075$ Å). The structures of these uranyl(VI) complexes were solved by direct (SIR 92)¹⁶³⁾ or heavyatom Patterson methods¹⁶⁴⁾ and expanded using Fourier techniques.¹⁶⁵⁾ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model (C–H bond, aromatic: 0.95 Å, methyl: 0.98 Å). The final cycle of full-matrix least-squares refinement on F^2 was based on observed reflections and parameters, and converged with unweighted and weighted agreement factors, R and wR. The weighing schemes for the refinements of UO₂(saloph)DMF·CH₂Cl₂, [UO₂(saloph)]₂, and [UO₂(saloph)]₂·0.5CH₂Cl₂ by SHELXL-97¹⁶⁶⁾ were $w = 1/[\sigma^2 F_o^2 + (0.0262P)^2 + 5.3741P], w = 1/[\sigma^2 F_o^2 + (0.0256P)^2 + 5.3741P]$ 46.5808P], and $w = 1/[\sigma^2 F_o^2 + (0.0396P)^2 + 60.3343P]$, respectively $(P = F_o^2 + 2F_c^2)/3)$. Plots of $\sum w(|F_o| - |F_c|)^2$ versus $|F_o|$, reflection order in data collection, $\sin \theta / \lambda$, and various classes of indices showed no unusual trends for these uranyl(VI) complexes. The maximum (minimum) peaks on the final difference Fourier maps for UO₂(saloph)DMF·CH₂Cl₂, [UO₂- $(saloph)]_2$, and $[UO_2(saloph)]_2 \cdot 0.5 CH_2 Cl_2$ corresponded to 0.964 (-0.740), 1.726 (-2.211), and 2.490 (-2.984) e^{-1} , respectively. Neutral atom scattering factors were taken from Cromer and Waber.¹⁶⁷⁾ Anomalous dispersion effects were included in $F_c^{(168)}$; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAulley.¹⁶⁹⁾ The values for the mass attenuation coefficients were those of Creagh and Hubbell.¹⁷⁰⁾ All calculations were performed by the CrystalStructure crystallographic software package.¹⁷¹ Crystal data and other data collection parameters of UO₂(saloph)DMF·CH₂Cl₂ and [UO₂(saloph)]₂ are summarized in Tables 2.1 and 2.2, respectively. The crystallographic information files of $UO_2(saloph)DMF \cdot CH_2Cl_2$, [UO₂(saloph)]₂, and [UO₂(saloph)]₂·0.5CH₂Cl₂ are in Appendixes A, B, and C, respectively.

2.2.2 Results and Discussion

In the diffuse reflectance IR spectrum of UO₂(saloph)DMF in KBr (Figure 2.5), the typical peaks due to O=U=O asymmetric stretching (ν_3) of the uranyl(VI) moiety, C=N stretching in saloph, and C=O stretching in DMF were observed at 905, 1609, and 1651 cm⁻¹, respectively. Since the corresponding IR peaks of the free H₂saloph and DMF appear at 1615 and 1720 cm⁻¹, respectively, such red shifts of these peaks indicate the coordination of saloph and DMF to the uranyl(VI) ion. Furthermore, IR peaks due to -OH stretching of

Figure 2.5. IR spectrum of UO₂(saloph)DMF in KBr.

H₂saloph at around 3500 cm⁻¹ were not observed for the present uranyl(VI) complex. This means the deprotonation from H_2 saloph. As a consequence, the formation of UO_2 (saloph)-DMF was confirmed.

To analyze the molecular structure of $UO_2(saloph)DMF$, the single crystal X-ray analysis was carried out. The crystallographic data and ORTEP view of UO₂(saloph)DMF are shown in Table 2.1 and Figure 2.6, respectively. The resulting crystal of UO₂(saloph)DMF contained one molecule of dichloromethane used as the solvent in the recrystallization. It was found that UO₂(saloph)DMF has the pentagonal bipyramidal geometry with the axial O=U=O moiety, which is one of the most popular structures of the uranyl(VI) complexes. Because of the completely conjugated π electron system of saloph with three benzene rings bridged by two azomethine groups, usually this ligand has been known to have large planarity in its metal complexes.^{172–174)} However, the coordinated saloph in UO₂(saloph)DMF is largely distorted about 35° as seen from Figure 2.6. This is due to the bulky size of the center uranium. Such distortion was also reported for the analogous uranyl(VI) saloph complex with ethanol, UO₂(saloph)EtOH, by Bandoli et al.²⁴⁾ The U=O bond distances in UO₂(saloph)DMF are 1.776(2) and 1.788(2) Å and the uranyl(VI) moiety is almost linear

Ta	able 2.1. Crystallographic	data of UO ₂ (saloph)DMF·C	H_2Cl_2	
Empirical formula	$C_{24}H_{23}Cl_2N_3O_5U$	Temparature (°C)	-150.0	
Formula weight	742.38	$D_{\text{calc}} (\text{g} \cdot \text{cm}^{-3})$	1.969	
Crystal system	monoclinic	Crystal size (mm)	$0.30 \times 0.30 \times 0.30$	
Space group	$P2_1/n$ (#14)	Crystal color and shape	orange, block	
<i>a</i> (Å)	10.667(4)	${F}_{000}$	1416	
<i>b</i> (Å)	9.608(3)	$2\theta_{\max}$ (°)	55.0	
<i>c</i> (Å)	24.859(10)	Observed data	5734	
β (°)	100.65(3)	R^{a}	0.0258	
$V(Å^3)$	2503.9(16)	wR ^b	0.0650	
7	4	S (Goodness of fit) ^c	1 1 1 0	

S (Goodness of fit)

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, {}^{b}wR = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2})/\Sigma w(F_{o}^{2})^{2}]^{1/2}, {}^{c}S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/(N_{o} - N_{v})]^{1/2},$ $w = 1/[\sigma^2 F_o^2 + (0.0262P)^2 + 5.3741P)]$ where $P = (F_o^2 + 2F_c^2)/3)$

Figure 2.6. ORTEP view of asymmetric unit of UO₂(saloph)DMF·CH₂Cl₂. Probability: 50%. Bond distances (Å); U(1)–O(1): 1.776(2), U(1)–O(2): 1.788(2), U(1)–O(3): 2.410(3), U(1)–O(4): 2.260(3), U(1)–O(5): 2.275(3), U(1)–N(2): 2.549(3), U(1)–N(3): 2.539(3). Bond angle (°); $\angle O(1)-U(1)-O(2) = 176.94(11)$.

 $(\angle O(1)-U(1)-O(2) = 176.94(11))$. These results are characteristics of uranyl(VI) complexes as described in Chapter 1. The U(1)–O(4) and U(1)–O(5) bond distances (2.26–2.28 Å) are shorter than U(1)–N(2) and U(1)–N(3) (2.54–2.55 Å). Such a difference implies that the coordination of the oxygen atoms in saloph are stronger than the nitrogen atoms. The bond distance between the oxygen atom in DMF and the center uranium is 2.410(3) Å, which is longer than U(1)–O(4) and U(1)–O(5). It seems that the coordination of DMF through its oxygen atom in UO₂(saloph)DMF is not so strong as those of saloph.

To investigate behavior of UO₂(saloph)DMF in solution, ¹H NMR spectroscopy was utilized. The ¹H NMR spectra of dichloromethane- d_2 solution dissolving the crystals of UO₂-(saloph)DMF·CH₂Cl₂ are shown in Figure 2.7. The very complicated signals in a region from 6.7 to 8.0 ppm are due to the phenyl groups of saloph (12H). At -60° C, two doublet signals due to the methyl groups in the free and coordinated DMF² appeared at 2.83 and 3.36 ppm, respectively, which coalesced into one peak with an increase in temperature. The existence of the free DMF and such a coalescence of the signals indicate the partial dissociation of the coordinated DMF from UO₂(saloph)DMF and the exchange reaction between the free and coordinated DMF. The same phenomena were also observed in the case of the formyl groups of the free and coordinated DMF which showed the NMR signals at 7.92 and 9.14 ppm at -60° C, respectively. Furthermore, two singlet signals attributable to the azomethine group of saloph were observed at 9.39 and 9.66 ppm. Both azomethine signals

²The doublet signals are due to the following chemical exchange between the methyl groups nearer to and further from the carbonyl oxygen in DMF.

where asterisk is a typographical distinction only.
are in lower field than that of free H_2 saloph (8.65 ppm). Thus, the uranyl(VI) complexes coordinated with saloph have two different forms in this system. At -60° C, the peak areas of the azomethine signals (2H) at 9.39 and 9.66 ppm correspond to those of the methyl signals (6H) of the coordinated (3.36 ppm) and free (2.83 ppm) DMF in 1 : 3 ratios, respectively. Therefore, these azomethine signals in Figure 2.7 can be assigned to those in UO₂(saloph)DMF (9.39 ppm) and the DMF dissociated uranyl(VI) species (9.66 ppm). With an increase in temperature from -60 to 20° C, the intensities of the azomethine signals at 9.39 and 9.66 ppm decreased and increased, respectively. Additionally, when a small amount of free DMF was added into the sample solution of Figure 2.7, the azomethine signal due to the DMF dissociated uranyl(VI) species was vanished, whereas that due to UO₂(saloph)DMF did not show any changes. Therefore, an equilibrium reaction between UO₂(saloph)DMF and the DMF dissociated uranyl(VI) species should occur in this system. It must be noted that the line-widths of the azomethine signals at 9.39 and 9.66 ppm have no significant temperature dependences in spite of the line-broadening of the signals due to the free and coordinated DMF for their exchange reaction. This means that the equilibrium between UO₂(saloph)-DMF and the DMF dissociated uranyl(VI) species is independent of the DMF exchange reaction in $UO_2(saloph)DMF$. The similar phenomena were also observed in chloroform-d solution dissolving UO₂(saloph)DMF.

From the dichloromethane solution dissolving UO₂(saloph)DMF, some red crystals deposited. The single crystal X-ray analysis was also performed for this crystal. As a result, this crystal was found to be a dinuclear uranyl(VI) complex consisting of two UO₂(saloph) fragments, $[UO_2(saloph)]_2$. The crystallographic data and ORTEP views of the asymmetric units of $[UO_2(saloph)]_2$ are shown in Table 2.2 and Figure 2.8, respectively. The geometry around each uranyl(VI) ion is also pentagonal bipyramidal. The bond distances between the center uranium and the bridging oxygen atom in each UO₂(saloph) fragment, U(1)–O(4), U(2)–O(8), U(3)–O(11), and U(4)–O(15), are 2.39–2.40 Å, which is longer than those including the non-bridging oxygen atom; 2.20–2.23 Å (U(1)–O(3), U(2)–O(7), U(3)–O(12), and U(4)–O(16)). Such difference of U–O bonds should be caused by bridging between UO₂(saloph) fragments. The lengths of the bridges, U(1)–O(8), U(2)–O(4), U(3)–O(15), and U(4)–O(11), are 2.46–2.49 Å, which are longer than the bond distance between the uranium and the oxygen atom in DMF of UO₂(saloph)DMF (2.410(3) Å). The saloph ligands are distorted in a similar manner to that in UO₂(saloph)DMF (Figure 2.6). The distortion of saloph results the

Table 2.2. Crystallographic data of $[UO_2(saloph)]_2$					
Empirical formula	$C_{40}H_{28}N_4O_8U_2$	Ζ	4		
Formula weight	1168.72	Temparature (°C)	-180.0		
Crystal system	triclinic	$D_{\text{calc}} (\text{g} \cdot \text{cm}^{-3})$	1.945		
Space group	P1 (#2)	Crystal size (mm)	$0.20\times0.10\times0.10$		
<i>a</i> (Å)	15.689(7)	Crystal color and shape	red, block		
<i>b</i> (Å)	16.044(5)	F_{000}	2176		
<i>c</i> (Å)	17.642(7)	$2\theta_{\max}$ (°)	55.0		
α (°)	67.00(3)	Observed data	17643		
eta (°)	78.25(3)	R^a	0.0578		
γ (°)	81.72(3)	wR^b	0.1082		
$V(Å^3)$	3992(3)	S (Goodness of fit) c	1.022		

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})^{2}]^{1/2}, {}^{c}S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{v})]^{1/2},$

 $w = 1/[\sigma^2 F_o^2 + (0.0256P)^2 + 46.5808P)]$ where $P = (F_o^2 + 2F_c^2)/3)$

Figure 2.8. ORTEP views of racemic units of $[UO_2(saloph)]_2$. Probability: 50%. Bond distances (Å); U(1)–O(1): 1.769(7), U(1)–O(2): 1.774(7), U(1)–O(3): 2.233(7), U(1)–O(4): 2.387(6), U(1)–O(8): 2.463, U(1)–N(1): 2.540(8), U(1)–N(2): 2.540(8), U(2)–O(5): 1.779(7), U(2)–O(6): 1.784(7), U(2)–O(7): 2.217(6), U(2)–O(8): 2.400(6), U(2)–O(4): 2.475, U(2)–N(3): 2.546(7), U(2)–N(4): 2.495(8), U(3)–O(9): 1.771(7), U(3)–O(10): 1.773(7), U(3)–O(11): 2.389(7), U(3)–O(12): 2.202(6), U(3)–O(15): 2.491(6), U(3)–N(5): 2.560(8), U(3)–N(6): 2.535(8), U(4)–O(13): 1.779(7), U(4)–O(14): 1.784(6), U(4)–O(15): 2.392(7), U(4)–O(16): 2.207(7), U(4)–N(7): 2.512(7), U(4)–N(8): 2.524(9), U(1)...U(2): 3.8807(14), U(3)...U(4): 3.8718(19).

enantiomeric pair of the units of $[UO_2(saloph)]_2$ as shown in Figure 2.8. The crystal lattice contains same number of the enantiomers of $[UO_2(saloph)]_2$, *i.e.*, the racemic compound. The distance between the uranium atoms in each unit are 3.87 or 3.88 Å, which are too far to interact the uranium atoms each other. It was found that there is a solvent-accessible void in the crystal lattice of $[UO_2(saloph)]_2$. In fact, some crystals of $[UO_2(saloph)]_2$ involving the dichloromethane molecules in such a void were obtained with the identical cell parameters as shown in Table 2.2. The ORTEP view of the crystal lattice of $[UO_2(saloph)]_2 \cdot 0.5CH_2Cl_2$ is depicted in Figure 2.9. It is obvious that $[UO_2(saloph)]_2$ is one of the candidates of the DMF dissociated uranyl(VI) species observed in Figure 2.7, because $[UO_2(saloph)]_2$ is produced from the dichloromethane solution.

For the reactions of $UO_2(saloph)DMF$ accompanied by the dissociation of DMF in dichloromethane and chloroform observed in the ¹H NMR spectra (Figure 2.7), the following dimerization and dissociation equilibria can be proposed.

Dimerization of UO₂(saloph)DMF:

$$2UO_2(saloph)DMF \rightleftharpoons [UO_2(saloph)]_2 + 2DMF$$
 (2.1)

$$K_{\rm dim} = \frac{\left[[\rm UO_2(saloph)]_2 \right] [\rm DMF]^2}{\left[\rm UO_2(saloph) \rm DMF \right]^2}$$
(2.2)

Figure 2.9. ORTEP view of crystal lattice of [UO₂(saloph)]₂·0.5CH₂Cl₂.

Dissociation of DMF from UO₂(saloph)DMF:

$$UO_2(saloph)DMF \rightleftharpoons UO_2(saloph) + DMF$$
 (2.3)

$$K_{\rm dis} = \frac{\left[[\rm UO_2(saloph)]_2 \right] [\rm DMF]}{\left[\rm UO_2(saloph) \rm DMF \right]}$$
(2.4)

To determine which reaction is correct, the dependence of UV-visible absorption spectra on the DMF concentration was examined. As initial conditions, the crystals of $[UO_2(saloph)]_2$ (ca. 10^{-5} M) were dissolved in dichlromethane or chloroform solvents. Then, DMF diluted by the corresponding solvent was added stepwise into the sample solution dissolving [UO₂-(saloph)]₂. The resulting spectra of the dichloromethane and chloroform solutions at 298 K are shown in Figures 2.10(a) and (b), respectively. In these figures, isosbestic points were observed at 293, 392, and 518 nm in Figure 2.10(a) and 287 and 385 nm in Figure 2.10(b). The equilibrium constants assuming Eq. 2.1 (K_{dim}) and Eq. 2.3 (K_{dis}) were calculated from the absorbancies at 430 nm in Figures 2.10(a) and (b). As a result, in the dichloromethane system, the K_{dim} value at 298 K was evaluated as $(3.00 \pm 0.08) \times 10^{-3}$ M $(\log K_{\text{dim}} = -2.52 \pm 0.01)$ in average and almost constant within 3% error, while $K_{\rm dis}$ varied from 3.49×10^{-4} M to 1.63×10^{-4} M with the increase in the DMF concentration. This result concludes that the dimerization reaction of UO₂(saloph)DMF (Eq. 2.1) occurs in the dichloromethane solution, *i.e.*, the DMF dissociated uranyl(VI) species is $[UO_2(saloph)]_2$. In the chloroform system (Figure 2.10(b)), the calculated K_{dim} values also agreed with $(1.80 \pm 0.06) \times 10^{-2}$ M $(\log K_{\rm dim} = -1.74 \pm 0.01)$ within 3% error. Therefore, the azomethine signal at 9.66 ppm in the ¹H NMR spectra (Figure 2.7) is assigned to that of $[UO_2(saloph)]_2$.

Figure 2.10. UV-visible absorption spectra of (a) dichloromethane and (b) chloroform solutions containing $[UO_2(saloph)]_2$ ((a): 1.26×10^{-5} M, (b): 1.19×10^{-5} M) and various total concentration of DMF ((a): $0 \sim 2.32 \times 10^{-3}$ M, (b): $0 \sim 5.95 \times 10^{-3}$ M) at 298 K.

In Figure 2.7, the temperature dependence of the intensities of the ¹H NMR signals at 9.39 and 9.66 ppm was observed. Hence, the thermodynamic parameters of Eq. 2.1 can be estimated by using the K_{dim} values at different temperatures and the van't Hoff relationship (Eq. 2.5).

$$K_{\rm dim} = \exp\left(-\frac{\Delta H_{\rm dim}}{R} \cdot \frac{1}{T} + \frac{\Delta S_{\rm dim}}{R}\right)$$
(2.5)

where ΔH_{dim} , ΔS_{dim} , R, and T are the formation enthalpy and the formation entropy in Eq. 2.1, the gas constant (8.314 J·mol⁻¹·K⁻¹), and the absolute temperature (K), respectively. The resulting van't Hoff plot for Eq. 2.1 in the dichloromethane- d_2 and chloroform-d solutions are shown in Figure 2.11. The values of ΔH_{dim} , ΔS_{dim} , and $\log K_{\text{dim}}$ at 298 K were calculated as $33.0 \pm 0.7 \text{ kJ} \cdot \text{mol}^{-1}$, $68 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and -2.21 ± 0.03 for the dichloromethane ane system and $11.3 \pm 0.6 \text{ kJ} \cdot \text{mol}^{-1}$, $8.0 \pm 2.4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and -1.56 ± 0.02 for the chloroform

Figure 2.11. Semi-logarithmic plots of K_{dim} vs. the reciprocal temperature for dimerization of UO₂(saloph)-DMF (Eq. 2.1) in dichloromethane- d_2 (red) and chloroform-d (black).

Figure 2.12. ¹H NMR spectra of $[UO_2(saloph)]_2$ in dichloromethane- d_2 at different temperatures.

system, respectively. The log K_{dim} values of both systems at 298 K from the ¹H NMR data are consistent with those from the UV-visible absorption spectral data in Figure 2.10.

The ¹H NMR spectra of $[UO_2(saloph)]_2$ in dichloromethane- d_2 were measured at different temperatures. The results are shown in Figure 2.12. The peak attributable to the azomethine group in $[UO_2(saloph)]_2$ appears at 9.67 ppm, which is much close to that at 9.66 ppm in Figure 2.7. Thus, it was confirmed that the assignment for the signal at 9.66 ppm to the azomethine group in $[UO_2(saloph)]_2$ described above is correct. The phenyl signals in the range from 6.7 to 8.0 ppm are well-resolved at -60° C. With elevating temperature, such signals are broadened and finally coalesced. This phenomenon means occurrence of the intramolecular exchange reaction between the enantiomers of $[UO_2(saloph)]_2$ as shown in Figure 2.13. According to Cort *et al.*,¹⁷⁵⁾ it has been suggested that the monomeric UO₂(saloph) and its derivatives, which have not been identified in both solid and solution states, show the intramolecular exchange reactions through a flipping of the distorted saloph ligand. If such a flipping model is also true in the case of [UO₂(saloph)]₂, the bridged and non-bridged phenoxide groups in $[UO_2(saloph)]_2$ do not exchange each other as shown in Figure 2.14, *i.e.*, no aspects of the chemical exchange of the phenyl groups in $[UO_2(saloph)]_2$ should be observed in ¹H NMR spectra. Therefore, the flipping model cannot explain the experimental result observed in Figure 2.12. Another candidate for the exchange mechanism is the sliding model as shown in Figure 2.15. In this model, the bridged and non-bridged phenoxide groups exchange each other. As a result, the line-broadening of the phenyl signals as found in Figure 2.12 will be observed. Hence, the intramolecular exchange reaction of $[UO_2(saloph)]_2$

Figure 2.13. Scheme of intramolecular exchange between enantiomers of [UO₂(saloph)]₂.

Figure 2.14. Scheme of flipping model for the intramolecular exchange in [UO₂(saloph)]₂. Red, blue, and purple colors of capital letters "A" and "B" mean bridged and non-bridged phenoxide groups and that in intermediate, respectively.

Figure 2.15. Scheme of sliding model for the intramolecular exchange in [UO₂(saloph)]₂. Red, blue, and purple colors of capital letters "A" and "B" mean bridged and non-bridged phenoxide groups and that in intermediate, respectively.

can be considered to proceed through the sliding model.

If the UO₂(saloph) fragments in $[UO_2(saloph)]_2$ completely dissociate at the intermediate in the sliding mechanism, the competition between DMF and UO₂(saloph) to enter another UO₂(saloph) should take place. In this case, the azomethine signals of UO₂(saloph)DMF and $[UO_2(saloph)]_2$ are no longer independent of the DMF exchange reaction in UO₂(saloph)-DMF. However, the NMR line-widths of the azomethine signals due to UO₂(saloph)DMF and $[UO_2(saloph)]_2$ did not show any dependences on the DMF exchange reaction in UO₂-(saloph)DMF. Thus, the UO₂(saloph) fragments in $[UO_2(saloph)]_2$ should bind each other even at the intermediate in Figure 2.15. The kinetic analysis for the intramolecular exchange reaction of $[UO_2(saloph)]_2$ observed in Figure 2.12 could not be performed, because the multiplet phenyl signals of $[UO_2(saloph)]_2$ are too complicated and it is undistinguishable which sites exchange each other.

Determining the mechanism of the DMF exchange reaction in $UO_2(saloph)DMF$ (Eq. 2.6) may also be a probe to valid this matter.

$$UO_2(saloph)DMF + DMF^* \stackrel{k_{ex}}{\longleftrightarrow} UO_2(saloph)DMF^* + DMF$$
(2.6)

where k_{ex} is the apparent first-order rate constant and the asterisk is a typographical distinction only. If this DMF exchange reaction in UO₂(saloph)DMF proceeds through the dissociative mechanism and the UO₂(saloph) fragments in [UO₂(saloph)]₂ are completely divided at the intermediate of its sliding intramolecular exchange (Figure 2.15), the azomethine signals at 9.39 and 9.66 ppm are no longer independent of the DMF exchange reaction.

To estimate the rate constant of the DMF exchange reaction in $UO_2(saloph)DMF$ (Eq. 2.6),

Figure 2.16. (a) ¹H NMR spectra of dichloromethane- d_2 solution containing UO₂(saloph)DMF (1.6 × 10⁻² M) and DMF (1.02 × 10⁻¹ M) measured at various temperatures and (b) temperature dependence of k_{ex} . Symbols; circle: [UO₂(saloph)DMF] = 1.37 × 10⁻² M, [DMF] = 7.49 × 10⁻² M; square: [UO₂(saloph)DMF] = 1.37 × 10⁻² M, [DMF] = 1.2 × 10⁻¹ M; triangle: [UO₂(saloph)DMF] = 1.37 × 10⁻² M, [DMF] = 1.2 × 10⁻¹ M; and diamond: [UO₂(saloph)DMF] = 1.6 × 10⁻² M, [DMF] = 1.02 × 10⁻¹ M. Smooth line is the best fit of Eq. 2.8 for the experimental data.

the NMR line-broadening method was utilized. The temperature dependences of the ¹H NMR spectra of the dichloromethane- d_2 solution containing UO₂(saloph)DMF (1.6×10^{-2} M) and free DMF (1.02×10^{-1} M) are shown in Figure 2.16(a). From the K_{dim} value of UO₂-(saloph)DMF in the dichloromethane system, the presence of [UO₂(saloph)]₂ in this system is negligible. To determine the mechanism of Eq. 2.6, the dependence of the NMR line-broadening on the DMF concentration was tested. The experimental NMR spectra involving the DMF exchange reaction in UO₂(saloph)DMF at the different temperatures were simulated by using *gNMR* program.³ The resulting k_{ex} values from the NMR spectrum simulation are plotted in Figure 2.16(b). As can be seen from these plots, it seems likely that there are no remarkable dependences of k_{ex} on [DMF]. This indicates that Eq. 2.6 proceeds through a dissociative mechanism as shown in Eq. 2.7.

$$UO_{2}(saloph)DMF + DMF^{*} \xrightarrow{slow} UO_{2}(saloph) + DMF + DMF^{*} \xrightarrow{tast} UO_{2}(saloph)DMF^{*} + DMF$$
(2.7)

This fact also suggests that the UO₂(saloph) fragments in $[UO_2(saloph)]_2$ are not dissociated completely even at the intermediate in the sliding intramolecular exchange reaction of $[UO_2-(saloph)]_2$ (Figure 2.15) as described above. In the next section, the similar dissociative ligand exchange reaction was also observed in the system of the analogous uranyl(VI) saloph complex which contains dimethyl sulfoxide (DMSO) instead of DMF, UO₂(saloph)DMSO. The details of UO₂(saloph)DMSO will be discussed later.

The k_{ex} value of Eq. 2.7 is expressed by Eyring equation (Eq. 2.8).

$$k_{\rm ex} = \frac{k_{\rm B}T}{h} \exp\left(-\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\ddagger}}{R}\right)$$
(2.8)

³The program, gNMR,¹⁷⁶⁾ uses the standard Liouville representation of quantum mechanics to evaluate dynamic NMR spectra, as described by Binsch.¹⁷⁷⁾ This formalism easily lends itself to treatment of general inter- and intra-molecular permutations of nuclei.

where $k_{\rm B}$, h, ΔH^{\ddagger} , and ΔS^{\ddagger} are the Boltzmann constant (1.3807 × 10⁻²³ J·K⁻¹), the Planck constant (6.6261 × 10⁻³⁴ J·s), the activation enthalpy, and the activation entropy, respectively. The least-squares fit of Eq. 2.8 to the experimental plots shown in Figure 2.16(b) gave the activation parameters of Eq. 2.7 as $\Delta H^{\ddagger} = 19 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S^{\ddagger} = -118 \pm 4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. The large negative value of ΔS^{\ddagger} of Eq. 2.7 might be caused by a rearrangement of solvent molecules around UO₂(saloph) and the dissociated DMF. The k_{ex} value at 298 K for the DMF exchange reaction in UO₂(saloph)DMF was calculated as $1.68 \times 10^3 \text{ s}^{-1}$.

Consequently, the whole reaction mechanisms starting from $UO_2(saloph)DMF$ in dichloromethane and chloroform solutions are depicted in Figure 2.17.

Figure 2.17. Whole reaction mechanism starting from $UO_2(saloph)DMF$ including the DMF exchange (Eq. 2.7), the dimerization (Eq. 2.1), and the intramolecular exchange between the enantiomers of $[UO_2-(saloph)]_2$ (Figure 2.15) in dichloromethane and chloroform solutions.

2.3 UO₂(saloph)DMSO

2.3.1 Experimental Details

Synthesis of UO₂(saloph)**DMSO.** This uranyl(VI) complex was synthesized by the same procedure as that of UO₂(saloph)DMF, in which DMF was replaced by dimethyl sulfoxide (DMSO, Wako Pure Chemical Ind., Ltd.). Single crystals of UO₂(saloph)DMSO for X-ray crystallography were obtained from a DMSO solution containing UO₂(saloph)DMSO.

Other Materials. Dichloromethane- d_2 (ACROS, 99.8 atom% D) and chloroform-d (ACROS, 99.8 atom% D) were used for NMR measurements without further purification. All other chemicals used in this section were of reagent grade.

Methods. Characterization of $UO_2(saloph)DMSO$ was performed by using the IR spectrophotometer, the NMR spectrometer, and the single crystal X-ray diffractmeter in the similar manners to Section 2.2.

In the X-ray crystallography, the weighing scheme for the refinement of UO₂(saloph)-DMSO by SHELXL-97¹⁶⁶⁾ was $w = 1/[\sigma^2 F_o^2 + (0.0356P)^2 + 4.8982P]$ ($P = F_o^2 + 2F_c^2$)/3). The maximum (minimum) peaks on the final difference Fourier maps for UO₂(saloph)DMSO corresponded to 0.955 (-0.918) e⁻·Å⁻³. Crystal data and other data collection parameters are summarized in Tables 2.3. The crystallographic information of UO₂(saloph)DMSO is in Appendix D.

2.3.2 **Results and Discussion**

The IR spectrum of UO₂(saloph)DMSO in KBr (Figure 2.18) showed the characteristic peaks at 897, 999, and 1605 cm⁻¹, which were assigned to the v_3 of the uranyl(VI) moiety, S=O stretching of DMSO, and the C=N stretching of saloph, respectively. The C=N stretching of saloph indicates its coordination to uranyl(VI) ion as well as UO₂(saloph)DMF. It is known that the DMSO molecule is an ambidentate ligand. According to Nakamoto,¹⁶⁰⁾ the

Figure 2.18. IR spectrum of UO₂(saloph)DMSO in KBr.

Table 2.3. Crystallographic data of $UO_2(saloph)DMSO$					
Empirical formula	$C_{22}H_{20}N_2O_5SU$	Temparature (°C)	-160.0		
Formula weight	662.50	$D_{\text{calc}} (g \cdot \text{cm}^{-3})$	2.047		
Crystal system	monoclinic	Crystal size (mm)	$0.27\times0.15\times0.07$		
Space group	<i>P</i> 2 ₁ (#4)	Crystal color and shape	yellow, block		
<i>a</i> (Å)	13.303(7)	F_{000}	1256		
<i>b</i> (Å)	9.422(4)	$2\theta_{\max}$ (°)	55.0		
<i>c</i> (Å)	17.205(8)	Observed data	9110		
eta (°)	94.45(5)	R^{a}	0.0267		
V (Å ³)	2149.9(17)	wR ^b	0.0677		
Ζ	4	S (Goodness of fit) c	1.088		

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})^{2}]^{1/2}, {}^{c}S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{v})]^{1/2},$

 $w = 1/[\sigma^2 F_o^2 + (0.0356P)^2 + 4.8982P)]$ where $P = (F_o^2 + 2F_o^2)/3)$

Figure 2.19. ORTEP view of asymmetric unit of UO2(saloph)DMSO. Probability: 50%. Bond distances (Å); U(1)-O(1), 1.780(4), U(1)-O(2), 1.788(5), U(1)-O(3), 2.416(4), U(1)-O(4), 2.255(4), U(1)-O(5), 2.274(4), U(1)-N(1), 2.541(5), U(1)-N(2), 2.545(5), U(2)-O(6), 1.781(4), U(2)-O(7), 1.784(5), U(2)-O(8), 2.408(4), U(2)-O(9), 2.270(4), U(2)-O(10), 2.276(4), U(2)-N(3), 2.580(5), U(2)-N(4), 2.551(5).

coordination of DMSO through its oxygen atom to a metal ion shows the S=O stretching at lower frequency than that of the free DMSO at 1055~1100 cm⁻¹. Therefore, the observed S=O stretching of DMSO at 999 cm^{-1} indicates its coordination through the oxygen atom to the uranyl(VI) ion.

The single crystal X-ray analysis for $UO_2(saloph)DMSO$ was performed to obtain its molecular structure. The crystallographic data and ORTEP view of UO₂(saloph)DMSO are shown in Table 2.3 and Figure 2.19, respectively. The geometry around the uranium atom in UO₂(saloph)DMSO is also pentagonal bipyramidal. The U=O bond lengths in the axial O=U=O moiety, U(1)-O(1): 1.780(4), U(1)-O(2): 1.788(5), U(2)-O(6): 1.781(4), and U(2)-O(7): 1.784(5) Å, are usual. Furthermore, the bond distances between the donor atoms in saloph and the center uranium and the distortion of saloph in UO₂(saloph)DMSO are quite similar to those in $UO_2(saloph)DMF$. The bond distance between the oxygen atom in the unidentate ligand (DMSO) and the uranium is 2.416(4) or 2.408(4) Å, which is comparable with that in UO₂(saloph)DMF. It is likely that there are no remarkable differences

Figure 2.20. ¹H NMR spectra of dichloromethane- d_2 solution dissolving UO₂(saloph)DMSO at various temperatures.

between the coordination strengths of DMSO and DMF to the $UO_2(saloph)$ fragment from a viewpoint of the bond length.

To examine whether the dimerization of $UO_2(saloph)DMSO$ preceded by the DMSO dissociation also occurs in dichloromethane and chloroform systems, the ¹H NMR spectra of solutions dissolving UO₂(saloph)DMSO were measured at various temperatures. The results for the dichloromethane- d_2 solution are shown in Figure 2.20. As a result, the quite similar spectral features to Figure 2.7 were observed, *i.e.*, the presence of the DMSO dissociated uranyl(VI) species and the DMSO exchange reaction in $UO_2(saloph)DMSO$. The methyl signals of the free and coordinated DMSO were detected at 2.54 and 3.14 ppm, respectively. Two signals due to the azomethine group in the coordinated saloph appeared at 9.38 and 9.67 ppm. Because of the consistencies of the peak area ratios, the former corresponds to UO₂(saloph)DMSO, and the latter can be assigned to the DMSO dissociated uranyl(VI) species. The intensities of the azomethine signals depend on the temperature. Whereas, their line-widths do not change remarkably in spite of the DMSO exchange reaction in UO₂-(saloph)DMSO. Furthermore, the red crystals of [UO₂(saloph)]₂ were also obtained from the dichloromethane solution dissolving UO₂(saloph)DMSO. The same phenomena were also confirmed in the chloroform system dissolving $UO_2(saloph)DMSO$. Needless to say, the most probable candidate of the DMSO dissociated uranyl(VI) species is $[UO_2(saloph)]_2$. This is supported by the chemical shift of its azomethine signal at 9.67 ppm which agrees with that of $[UO_2(saloph)]_2$ shown in Figure 2.12. Hence, the following equilibrium should be presented in this system.

$$2UO_2(saloph)DMSO \rightleftharpoons [UO_2(saloph)]_2 + 2DMSO$$
 (2.9)

$$K_{\rm dim} = \frac{\left[[\rm UO_2(saloph)]_2 \right] [\rm DMSO]^2}{\left[\rm UO_2(saloph) \rm DMSO \right]^2}$$
(2.10)

The dependence of the UV-visible absorption spectra on the free DMSO concentration were measured in a similar manner to Figure 2.10. The resulting spectra of the dichloromethane and chloroform solutions are shown in Figure 2.21. The isosbestic points were confirmed at 297 and 382 nm in Figure 2.10(a), and 295 and 383 nm in Figure 2.10(b). The

Figure 2.21. UV-visible absorption spectra of (a) dichloromethane and (b) chloroform solutions containing $[UO_2(saloph)]_2$ ((a): 1.26×10^{-5} M, (b): 1.15×10^{-5} M) and various total concentration of DMSO ((a): $0 \sim 4.76 \times 10^{-4}$ M, (b): $0 \sim 1.04 \times 10^{-3}$ M) at 298 K.

 K_{dim} values in Eq. 2.10 were evaluated by using the absorbancies at 430 nm in Figure 2.21. The resulting K_{dim} (log K_{dim}) values at 298 K were (5.3 ± 0.8) × 10⁻⁵ M (-4.28 ± 0.06) for the dichloromethane system and (8.2 ± 1.4) × 10⁻⁴ M (-3.09 ± 0.08) for the chloroform one.

The thermodynamic parameters for Eq. 2.9 were estimated by using Eq. 2.5 and the concentrations of UO₂(saloph)DMSO, [UO₂(saloph)]₂, and the free DMSO derived from the peak areas in Figure 2.20. The van't Hoff plots for the dimerization of UO₂(saloph)DMSO in dichloromethane- d_2 and chloroform-d are shown in Figure 2.22. Consequently, the values of ΔH_{dim} , ΔS_{dim} , and log K_{dim} at 298 K for Eq. 2.9 were calculated as $39 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $52 \pm 6 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and -4.0 ± 0.5 for the dichloromethane system and $22 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $14 \pm 4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and -3.1 ± 0.3 for the chloroform system, respectively. The log K_{dim} values of both systems at 298 K showed the agreements with those obtained from the UV-visible absorption spectra.

Figure 2.22. Semi-logarighmic plots of K_{dim} vs. reciprocal temperature for dimerization of UO₂(saloph)DMSO (Eq. 2.9) in dichloromethane- d_2 (red) and chloroform-d (black).

Figure 2.23. (a) ¹H NMR spectra of dichloromethane- d_2 solution containing UO₂(saloph)DMSO (1.37 × 10⁻² M) and DMSO (3.29×10⁻² M) measured at various temperatures and (b) temperature dependences of k_{ex} . [UO₂(saloph)DMSO] = 1.37 × 10⁻² M (fixed). Symbols; circle: [DMSO] = 3.29 × 10⁻² M; square: [DMSO] = 5.89 × 10⁻² M; diamond: [DMSO] = 7.30 × 10⁻² M; and triangle: [DMSO] = 8.77 × 10⁻² M. Smooth line is the best fit of Eq. 2.8 for the experimental data.

Further support for validity of Eq. 2.9 can be obtained by determining the mechanism of the DMSO exchange reaction in $UO_2(saloph)DMSO$ (Eq. 2.11) observed in Figure 2.20.

$$UO_2(saloph)DMSO + DMSO^* \rightleftharpoons UO_2(saloph)DMSO^* + DMSO$$
 (2.11)

where the asterisk is a typographical distinction only. If the exchange reaction of DMSO in UO₂(saloph)DMSO proceeds through the dissociative mechanism and the DMSO dissociated uranyl(VI) species is the monomeric one, UO₂(saloph), the azomethine signals at 9.38 and 9.67 ppm are no longer independent of the DMSO exchange reaction. Thus, to determine the mechanism of Eq. 2.11, dependences of the k_{ex} value on the temperature and DMSO concentration were examined. The typical ¹H NMR spectra of the dichloromethane- d_2 solution containing UO₂(saloph)DMSO (1.37×10^{-2} M) and DMSO (3.29×10^{-2} M) at various temperatures are shown in Figure 2.23(a). The resulting NMR spectra at the different DMSO concentration (3.29×10^{-2} , 5.89×10^{-2} , 7.30×10^{-2} , and 8.77×10^{-2} M) were analyzed by using *gNMR* computer program.¹⁷⁶⁾ The temperature dependence of k_{ex} at the different DMSO concentrations are plotted in Figure 2.23(b). As can be seen from these plots, it is obvious that there are no dependences of k_{ex} in Eq. 2.11 on the DMSO concentration. This result indicates that the DMSO exchange reaction in UO₂(saloph)DMSO proceeds through the dissociative mechanism as follows (Eq. 2.12).

$$UO_{2}(saloph)DMSO + DMSO^{*} \xrightarrow{slow} UO_{2}(saloph) + DMSO + DMSO^{*} \xrightarrow{fast} UO_{2}(saloph)DMSO^{*} + DMSO \qquad (2.12)$$

Therefore, the possibility of the monomeric UO₂(saloph) as the DMSO dissociated uranyl(VI) species has been neglected completely, and the validity of Eq. 2.9 has been confirmed consequently. By using the Eyring equation (Eq. 2.8) and the data in Figure 2.23(b), the activation parameters, ΔH^{\ddagger} and ΔS^{\ddagger} , of Eq. 2.12 were evaluated as 29.7 ± 0.8 kJ·mol⁻¹ and

 $-83 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, respectively. The negative value of ΔS^{\ddagger} of Eq. 2.12 might be caused by a rearrangement of solvent molecules around UO₂(saloph) and the dissociated DMSO at the transition state. The k_{ex} at 298 K was calculated as $1.63 \times 10^3 \text{ s}^{-1}$ by using Eq. 2.8.

In a comparison between the k_{ex} values in both systems of UO₂(saloph)DMSO (1.63 × 10³ s⁻¹) and UO₂(saloph)DMF (1.68 × 10³ s⁻¹), no significant difference is found. However, the ΔH^{\ddagger} value of Eq. 2.12 (29.7±0.8 kJ·mol⁻¹) is larger than that of Eq. 2.7 (19±1 kJ·mol⁻¹). Furthermore, the equilibrium constants (K_{dim}) of the dimerization of UO₂(saloph)DMSO (Eq. 2.9) were found to be smaller than those of UO₂(saloph)DMF (Eq. 2.1) in both dichloromethane and chloroform systems. Such differences in ΔH^{\ddagger} and K_{dim} indicate that DMSO coordinates to the UO₂(saloph) fragment more strongly than DMF.

2.4 $UO_2(dbm)_2DMSO$

2.4.1 Experimental Details

Synthesis of UO₂(**dbm**)₂**DMSO.** Dibenzoylmethane (0.5 g, Hdbm, Kanto, see Figure 2.24) and UO₂(NO₃)₂·nH₂O were mixed in EtOH (20 ml) with vigorous stirring and heating. After refluxing for 3 h in the dark, water (40 ml) was added into this reaction mixture. The resulting orange precipitate was collected by filtration. This orange powder was dissolved in hot EtOH, and then DMSO (1 ml) was added with stirring. Water was mixed with this solution until precipitate was produced. The golden yellow powder of UO₂-(dbm)₂DMSO was filtered off, washed by EtOH and ether, and dried under vacuum. The product was recrystallized from dichloromethane and *n*-pentane. Single crystals of UO₂-(dbm)₂DMSO for X-ray crystallography were obtained from its dichloromethane solution with slow evaporation at 0°C.

Figure 2.24. Schematic structure of keto-form of dibenzoylmethane (Hdbm).

Other Materials. Dichloromethane- d_2 (ACROS, 99.8 atom% D) was used for NMR measurements without further purification. All other chemicals used in this section were of reagent grade.

Methods. Characterization of $UO_2(dbm)_2DMSO$ was performed by using the IR spectrophotometer, the NMR spectrometer, and the single crystal X-ray diffractmeter in the similar manners to Section 2.2.

In the X-ray crystallography, the weighing scheme for the refinement of UO₂(dbm)₂-DMSO by sheLxL-97¹⁶⁶⁾ was $w = 1/[\sigma^2 F_o^2 + (0.0312P)^2 + 38.5857P]$ ($P = F_o^2 + 2F_c^2$)/3). The maximum (minimum) peaks on the final difference Fourier maps for UO₂(dbm)₂DMSO corresponded to 1.481 (-1.404) e⁻·Å⁻³. Crystal data and other data collection parameters are summarized in Tables 2.4. The crystallographic information of UO₂(dbm)₂DMSO is in Appendix E.

2.4.2 Results and Discussion

The IR spectrum of $UO_2(dbm)_2DMSO$ in KBr is shown in Figure 2.25. The characteristic peaks due to the v_3 in the uranyl(VI) moiety, S=O stretching in DMSO, C=O and C=C stretchings in dbm were observed at 906, 1000, 1537, and 1590 cm⁻¹, respectively.¹⁶⁰⁾ These IR peaks suggest the coordination of dbm and DMSO through its oxygen atom to the uranyl(VI) ion.

The crystallographic data of $UO_2(dbm)_2DMSO$ were summarized in Table 2.4. Figure 2.26 shows the ORTEP view of the asymmetric unit of $UO_2(dbm)_2DMSO$. From this figure, it was found that $UO_2(dbm)_2DMSO$ also has the pentagonal bipyramidal geometry

Figure 2.25. IR spectrum of UO₂(dbm)₂DMSO in KBr.

which consists of two molecules of dibenzoylmethanate (dbm) and one molecule of DMSO around the axial uranyl(VI) ion. Such a structure is quite similar to the analogous complexes $(UO_2(dbm)_2L, L = benzylmethyl sulfoxide, dibenzyl sulfoxide, diphenyl sulfoxide, and (±)camphor) reported by Kannan$ *et al.*^{19,21)} The U=O bond lengths in the uranyl(VI) moiety are U(1)–O(1): 1.789(5), U(1)–O(2): 1.791(5), U(2)–O(8): 1.768(5), and U(2)–O(9): 1.788(6) Å, which are the usual values. In the equatorial plane, the bond distances between the oxygen atoms in dbm and the center uranium (U(1)–O(4), U(1)–O(5), U(1)–O(6), U(1)–O(7), U(2)–O(11), U(2)–O(12), U(2)–O(13), and U(2)–O(14)) are quite similar each other, 2.34–2.36 Å. The bond distance between the oxygen atom in DMSO and the uranium atom is U(1)–O(3): 2.435(6) or U(2)–O(10): 2.440(5) Å, which is slightly longer than that in UO₂(saloph)DMSO (2.41–2.42 Å).

It is necessary to confirm whether $UO_2(dbm)_2DMSO$ in solution also shows some reactions in a similar manner to $UO_2(saloph)DMF$ and $UO_2(saloph)DMSO$ or not. Thus, the ¹H NMR spectra of the dichloromethane- d_2 solution dissolving $UO_2(dbm)_2DMSO$ were measured at various temperatures. The results are shown in Figure 2.27. The sharp singlet signal due to the methyl group of DMSO was observed at 3.12 ppm (6H). Since the free DMSO

Table 2.4. Crystallographic data of $UO_2(dbm)_2DMSO$					
Empirical formula	C ₃₂ H ₂₈ O ₇ SU	$D_{\text{calc}} (\text{g} \cdot \text{cm}^{-3})$	1.835		
Formula weight	794.63	Crystal size (mm)	$0.10 \times 0.10 \times 0.10$		
Crystal system	orthorhombic	Crystal color and shape	yellow, block		
Space group	<i>Pna</i> 2 ₁ (#33)	F_{000}	3072.00		
<i>a</i> (Å)	16.090(6)	$2\theta_{\max}$ (°)	55.0		
b (Å)	9.975(3	Observed data	13170		
<i>c</i> (Å)	35.845(8)	R^{a}	0.0340		
V (Å ³)	5753(3)	wR ^b	0.0776		
Ζ	8	S (Goodness of fit) c	1.024		
Temparature (°C)	-180.0				
1	2 22 221/	2 2 2 2	1/0		

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})^{2}]^{1/2}, \ {}^{c}S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{v})]^{1/2},$

 $w = 1/[\sigma^2 F_o^2 + (0.0312P)^2 + 38.5857P)]$ where $P = (F_o^2 + 2F_c^2)/3)$

Figure 2.26. ORTEP view of asymmetric unit of UO₂(dbm)₂DMSO. Probability: 50%. Bond distances (Å); U(1)–O(1): 1.789(5), U(1)–O(2): 1.791(5), U(1)–O(3): 2.435(6), U(1)–O(4): 2.350(6), U(1)–O(5): 2.337(5), U(1)–O(6): 2.348(5), U(1)–O(7): 2.346(5), U(2)–O(8): 1.768(5), U(2)–O(9): 1.788(6), U(2)–O(10): 2.440(5), U(2)–O(11): 2.340(6), U(2)–O(12): 2.361(5), U(2)–O(13): 2.351(5), U(2)–O(14): 2.346(5).

Figure 2.27. ¹H NMR spectra of dichloromethane- d_2 solution dissolving UO₂(dbm)₂DMSO at room temperature.

shows its signal at 2.54 ppm and the broad peak in Figure 2.20 of Section 2.3 is the result of the DMSO exchange reaction in $UO_2(saloph)DMSO$, a sharp signal of DMSO at 3.12 ppm indicates that the DMSO molecule coordinates to the $UO_2(dbm)_2$ fragment strongly even in the dichloromethane solution.

For the dbm ligands in UO₂(dbm)₂DMSO, the methine group showed the sharp singlet

Figure 2.28. ¹H NMR spectra of $UO_2(dbm)_2DMSO$ in dichloromethane- d_2 focused on the signals due to the *o*-proton in dbm.

signal at 7.28 ppm (2H). Furthermore, the sharp signals due to the protons of the phenyl groups at *m*- and *p*-positions also appeared at in the range of 7.60–7.70 ppm as multiplet peaks (12H). On the other hand, the *o*-protons of the phenyl groups were observed at 8.51 ppm (8H) as a broad signal. Such features may suggest the dynamic behavior of dbm, especially concerning the o-protons, in UO₂(dbm)₂DMSO. Thus, the temperature dependence of the ¹H NMR spectra was measured. The results are shown in Figure 2.28. Since there were no remarkable changes of the signals except for that of o-proton with the temperature variation, this figure focuses on the o-proton signals in the region from 8.2 to 8.8 ppm. With a decrease in the temperature from 20 to -20° C, the signal of *o*-protons was split into two peaks, and in the temperature below -20° C, these two signals were further split into the multiplet peaks. The first splitting shows that there are two distinguishable sites in this temperature range ($20 \sim -20^{\circ}$ C). The second splitting below -20° C indicates that the multiplet signals are involved in the two signals at -20° C. From the splitting schemes, the reaction mechanism corresponding to the first step may be the intramolecular exchange reaction of the phenyl ring position nearer to and further from the coordinated DMSO. Presence of such a reaction has already been confirmed in the systems of the analogous uranyl(VI) bis(β -diketonato) complexes, UO₂(acac)₂L (acac = acetylacetonato, L = DMSO, DMF, and N,N-diethylformamide) and $UO_2(1,1,1-trifluoroacetylacetonato)_2THF$ (THF = tetrahydrofuran).^{79,80)} The intramolecular reactions of these uranyl(VI) complexes are proposed to be initiated by the L dissociation. For the reaction mechanism of the second step $(-20 \sim -60^{\circ}C)$, the phenyl ring rotation will be most probable. The schematic mechanisms of $UO_2(dbm)_2DMSO$ are shown in Figure 2.29. Unfortunately, it was difficult to perform the kinetic analysis for the behavior of the *o*-protons themselves in dbm, because their NMR signals are essentially complicated multiplets as shown in Figure 2.28 at -60° C. Limiting the first step in Figure 2.28, the apparent first-order rate constant of the intramolecular exchange reaction (k_{intra}) at the coalescence temperature (0°C) was evaluated as 9.2×10^1 s⁻¹ by Eq. 2.13.

$$k_{\text{intra}} = \frac{\pi \, \delta \nu}{\sqrt{2}} \tag{2.13}$$

where δv is the peak separation between two sites in s⁻¹.

Ikeda *et al.*⁸⁰⁾ have determined the reaction mechanism of such an intramolecular exchange in $UO_2(acac)_2L$ by relating it with the L exchange reactions. According to them, the

Figure 2.29. Scheme of intramolecular exchange of the phenyl ring positions and the rotation of the phenyl ring. Red and blue colors of the capital letters "A" and "B" indicate the phenyl groups nearer to and further from the coordination site for DMSO, respectively.

L exchange reaction proceed through the dissociative mechanism and the uranyl(VI) species at the intermediate of the intramolecular exchange should also be the L dissociated one such as $UO_2(acac)_2$. In that case, the free L molecule can coordinate to both sides of $UO_2(acac)_2$ at the transition state. Since the coordination sites for L in $UO_2(acac)_2$ should be equivalent, the probabilities of the re-coordination of L to either vacant sites in the intermediate must be equal. Therefore, the rate constant of the intramolecular exchange in $UO_2(acac)_2L$ should be one half of that of the L exchange reaction. Actually, their proposal has been evidenced in the experiments. This theory can also be applied to the present system of $UO_2(dbm)_2DMSO$.

To confirm the reaction mechanism shown in Figure 2.29, the following DMSO exchange reaction in $UO_2(dbm)_2DMSO$ were studied.

$$U^{VI}O_2(dbm)_2DMSO + DMSO^* \stackrel{k_{ex}}{\longleftrightarrow} U^{VI}O_2(dbm)_2DMSO^* + DMSO$$
 (2.14)

where the asterisk is a typographical distinction only. If the rate-determining step of the intramolecular exchange in UO₂(dbm)₂DMSO is the dissociation of the coordinated DMSO and the DMSO exchange reaction in UO₂(dbm)₂DMSO occurs in the dissociative mechanism, one half of the k_{ex} value at 273 K will equals to k_{intra} (9.2 × 10¹ s⁻¹). Thus, the dependences of the ¹H NMR spectrum of UO₂(dbm)₂DMSO (1.3 × 10⁻² M) on the temperature and concentration of the free DMSO (2.8 × 10⁻², 4.6 × 10⁻², and 6.7 × 10⁻² M)

Figure 2.30. (a) ¹H NMR spectra of dichloromethane- d_2 solution containing UO₂(dbm)₂DMSO (1.3×10⁻² M) and DMSO (2.8×10⁻² M) measured at different temperatures and (b) temperature dependence of k_{ex} .

were measured for $UO_2(dbm)_2DMSO$ in dichloromethane- d_2 . The typical NMR spectra are shown in Figure 2.30(a). The k_{ex} values were obtained by simulating the spectra using *gNMR* program¹⁷⁶⁾ and plotted against the reciprocal temperatures. The results are shown in Figure 2.30(b). The k_{ex} value at each temperature was found to be independent of the DMSO conccentration, indicating the dissociative mechanism of the DMSO exchange reaction in $UO_2(dbm)_2DMSO$ as follows.

$$UO_{2}(dbm)_{2}DMSO + DMSO^{*} \xrightarrow{slow} UO_{2}(dbm)_{2} + DMSO + DMSO^{*} \xrightarrow{fast} UO_{2}(dbm)_{2}DMSO^{*} + DMSO \qquad (2.15)$$

By using Eq. 2.8, the activation parameters, ΔH^{\ddagger} and ΔS^{\ddagger} , for Eq. 2.15 were evaluated as $30 \pm 2 \text{ kJ} \cdot \text{mol}^{-1}$ and $-88 \pm 5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, respectively. The k_{ex} values at 273 K was calculated as $2.0 \times 10^2 \text{ s}^{-1}$. As a result, one half of k_{ex} at 273 K is almost comparable with k_{intra} at the same temperature ($9.2 \times 10^1 \text{ s}^{-1}$). Therefore, it can be suggested that the intramolecular exchange reaction in UO₂(dbm)₂DMSO occurs through the formation of the intermediate such as UO₂(dbm)₂.

Interestingly, with addition of the free DMSO into the dichloromethane- d_2 solution containing UO₂(dbm)₂DMSO, both of the phenyl rotation and the intramolecular exchange reaction of UO₂(dbm)₂DMSO in Figure 2.29 become slower than those in the system without the free DMSO. Such a feature was confirmed in the ¹H NMR spectra of the sample solutions containing free DMSO shown in Figure 2.31. In the system without free DMSO (Figure 2.28), the *o*-proton signals are coalesced at 273 K because of the intramolecular exchange of UO₂(dbm)₂DMSO. On the other hand, in the case of the presence of the free DMSO (2.8×10^{-2} M, Figure 2.31), such signals are still split into the essential multiplets of the *o*-proton at the same temperature.

To explain such a slowdown of the intramolecular exchange reaction in $UO_2(dbm)_2$ -DMSO caused by the addition of the free DMSO, a mechanism shown in Figure 2.32 may be proposed. At the intermediate of the intramolecular exchange reaction in $UO_2(dbm)_2$ -DMSO, the geometry in $UO_2(dbm)_2$ just after the dissociation of the coordinated DMSO should not be regularly tetragonal bipyramidal, but a bipyramid with a trapezoidal equatorial plane, because the $UO_2(dbm)_2$ fragment also has such a structure at the initial state.

Figure 2.31. ¹H NMR spectra of dichloromethane- d_2 solution containing UO₂(dbm)₂DMSO (1.3 × 10⁻² M) and free DMSO (2.8 × 10⁻² M).

Figure 2.32. Schematic mechanism of the intramolecular exchange reaction in $UO_2(dbm)_2DMSO$. Red and blue colors of the capital letters "A" and "B" indicate the phenyl groups nearer to and further from the coordination site for DMSO, respectively. The letters in purple means the equivalent phenyl groups.

To occur the intramolecular exchange in $UO_2(dbm)_2DMSO$, a structure relaxation process from the distorted $UO_2(dbm)_2$ to the regularly tetragonal bipyramidal one must take place, because of the steric hindrance in the approach of entering DMSO to either vacant sites in $UO_2(dbm)_2$. Therefore, the slower intramolecular exchange reaction of $UO_2(dbm)_2DMSO$ in the presence of the free DMSO observed in Figure 2.31 can be considered to be a result that the re-coordination of DMSO occurs before the achievement of the structure relaxation at the intermediate. The rate constant of the structure relaxation should be twice larger than k_{intra} under the presence of the free DMSO, because the product in the relaxation will be re-coordinated by DMSO from either sides in 50% probability, respectively. Unfortunately, the kinetic analyses for k_{intra} and the structure relaxation at the transition state could not be performed for the complexity of the experimental spectra as shown in Figure 2.31. Furthermore, it can be postulated that the additional free DMSO interacts with $UO_2(dbm)_2DMSO$ in some manners and hence the slow phenyl rotation results. However, the details why the phenyl rotation also becomes slower with the addition of the free DMSO are still uncertain.

For the system of $UO_2(dbm)_2DMSO$, it was found that the DMSO molecule coordinates to the $UO_2(dbm)_2$ fragment even in the dichloromethane solution. Furthermore, the calculated k_{ex} value of the dissociative DMSO exchange reaction in $UO_2(dbm)_2DMSO$ at 298 K is 6.8×10^2 s⁻¹, which is one-order smaller than that in $UO_2(saloph)DMSO$ (1.63×10^3 s⁻¹). These results imply that the coordination of DMSO to $UO_2(dbm)_2$ is stronger than that to $UO_2(saloph)$.

Chapter 3

Uranyl(V) Carbonate Complex in Aqueous System

Uranyl(V) carbonate is known as only one stable uranyl(V) complex in the aqueous system, which exists as $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$. Thus, it can be expected to obtain useful information concerning chemical properties of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$. In fact, some researchers have already studied its spectroscopic,^{147,148)} electrochemical,^{148,150)} thermodynamic,¹⁴⁹⁾ structural properties,^{151,153)} and so on. One of the most important properties to prepare $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ is its electrochemical data, especially the standard redox potential (E°) of the $[U^{V}O_{2}(CO_{3})_{3}]^{5-}/[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ couple. However, various E° values of this redox couple were reported such as -0.714, -0.730, -0.7459, -0.749, -0.815, and -0.859 V vs. Ag/AgCl as summarized by Grenthe *et al.*¹²⁾ Therefore, it was necessary to know the correct E° value of the $[U^{V}O_{2}(CO_{3})_{3}]^{5-}/[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ couple under the experimental condition in the present study.

The advantages of study on properties of $[U^VO_2(CO_3)_3]^{5-}$ in aqueous system are the stability of the simple ligand like CO_3^{2-} to redox reaction and the high conductivity of the sample solution. These will make it possible to prepare $[U^VO_2(CO_3)_3]^{5-}$ with a bulk electrolysis. The bulk solution of $[U^VO_2(CO_3)_3]^{5-}$ allows to investigate its kinetics such as the ligand exchange reaction. The study on the reactivity of the uranyl(V) complex is also the important issue in this study.

3.1 Spectroelectrochemistry of $[U^{VI}O_2(CO_3)_3]^{4-}$ in Aqueous Solution

3.1.1 Experimental Details

UV-visible Spectroelectrochemical Measurements. In this study, spectroelectrochemical techniques^{178, 179)} were used to study electrochemical processes of the uranyl(VI) complexes and to obtain data concerning properties of the uranyl(V) complexes. To observe absorption spectra in UV and visible regions, quartz cells with optical transparent Pt minigrid working electrodes were designed according to the previous articles^{180, 181)} and mounted on the cell holder of SHIMADZU UV-3150 spectrophotometer. The schematic view of this optical transparent thin layer electrode (OTTLE) cell is shown in Figure 3.1. The effective optical path length of the OTTLE cell was spectrophotometrically calibrated as 1.89×10^{-2} cm. The three-electrode system was utilized, which consisted of the Pt minigrid OTTLE as a working electrode, a Pt wire counter electrode (BAS 002222), and an Ag/AgCl reference electrode (BAS 002020 RE-1B, sat. NaCl aq.) with a liquid junction of glass flit filled by a blank solution (1 M Na₂CO₃aq.). The potential applied on the OTTLE was controlled by BAS CV-50W voltammetric analyzer. The absorption spectra at various applied potentials were measured after reaching equilibrium of the electrochemical reaction on the OTTLE at 298 K, which required 2 min. The sample solutions in the OTTLE cells were deoxygenated by passing dry argon gas at least 1 h prior to starting the measurements.

Figure 3.1. Schematic view of OTTLE cell. (a) Pt minigrid working electrode, (b) quartz cell body, (c) reference electrode with a liquid junction of glass flit filled by a blank solution, (d) Pt wire counter electrode, (e) argon gas inlet, (f) PTFE cap, (g) optical path of the spectrophotometer.

3.1.2 Results and Discussion

According to the previous reports,¹⁵⁰⁾ the electrochemical reduction of $[U^{VI}O_2(CO_3)_3]^{4-}$ to $[U^{V}O_2(CO_3)_3]^{5-}$ should occur at around -0.8 V vs. Ag/AgCl. Thus, the UV-visible spectroelectrochemical measurements for the $[U^{V}O_2(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$ redox couple were carried out in the range from 0 to -0.900 V vs. Ag/AgCl. The resulting UV-visible absorption spectra at different potentials are shown in Figure 3.2. The absorbancies at around 450 nm corresponding to the LMCT transition in $[U^{VI}O_2(CO_3)_3]^{4-}$ (Figure 2.2) decreased with a decrease in the potential and converged at -0.900 V vs. Ag/AgCl. In Figure 3.2, clear isosbestic points were observed at 367 and 387 nm, indicating that only one equilibrium, *i.e.*, $[U^{V}O_2(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$ redox reaction, occurs in this system. The absorbance of each spectrum in Figure 3.2 is reflecting the concentration profile between the oxidant and reductant at each potential. Such a concentration profile is determined by the Nernstian equation (Eq. 3.1)

$$E = E^{\circ\prime} + \frac{RT}{nF} \ln \frac{C_O}{C_R}$$

$$= E^{\circ\prime} + \frac{RT}{nF} \ln \frac{A - A_R}{A_O - A}$$
(3.1)

E: Potential applied on the OTTLE $E^{\circ\prime}$: Formal potential *n*: Electron stoichiometry *F*: Faraday constant (96485 C) C_O, C_R : Concentrations of oxidant and reductant (M) *A*: Absorbance at each potential value A_O, A_R : Absorbance of oxidant and reductant, respectively

The Nernstian plot from the absorbancies at 447 nm in Figure 3.2 is shown in Figure 3.3. In the least-squares fit for the experimental plot to Eq. 3.1, the slope and the intercept were

Figure 3.2. UV-visible absorption spectra measured at the applied potentials in the range from 0 to -0.900 V vs. Ag/AgCl for the $[\text{U}^{V}\text{O}_{2}(\text{CO}_{3})_{3}]^{5-}/[\text{U}^{VI}\text{O}_{2}(\text{CO}_{3})_{3}]^{4-}$ redox couple (total concentration: $4.38 \times 10^{-2} \text{ M}$) in aqueous solution containing Na₂CO₃ (1.0 M). Optical path length: $1.89 \times 10^{-2} \text{ cm}$.

Figure 3.3. A Nernstian plot for the absorbancies at 447 nm in Figure 3.2.

calculated as 0.028 ± 0.001 and -0.751 ± 0.001 , respectively. It is obvious that these parameters are corresponding to RT/nF and $E^{\circ\prime}$ in Eq. 3.1, respectively. Thus, the electron stoichiometry (*n*) and the formal potential ($E^{\circ\prime}$) at 298 K in the electrochemical reduction of $[U^{VI}O_2(CO_3)_3]^{4-}$ were evaluated as 0.90 ± 0.02 and -0.751 ± 0.001 V vs. Ag/AgCl, respectively. Consequently, it was confirmed that the electrochemical reaction observed in Figure 3.2 is that between $[U^VO_2(CO_3)_3]^{5-}$ and $[U^{VI}O_2(CO_3)_3]^{4-}$ as follows.

$$[\mathrm{U}^{\mathrm{VI}}\mathrm{O}_{2}(\mathrm{CO}_{3})_{\mathrm{l}}^{4-} + \mathrm{e}^{-} \rightleftharpoons [\mathrm{U}^{\mathrm{V}}\mathrm{O}_{2}(\mathrm{CO}_{3})_{\mathrm{l}}^{5-} \tag{3.2}$$

Furthermore, the $E^{\circ\prime}$ value under the present experimental condition was determined. This electrochemical data were used to prepare sample solutions of $[U^VO_2(CO_3)_3]^{5-}$ in Section 3.2 (¹³C NMR) and Chapter 6 (electronic spectrum).

From the reviews reported previously,^{12, 13} the thermodynamic data of $[U^VO_2(CO_3)_3]^{5-}$ and related species are available. Here, the stability of $[U^VO_2(CO_3)_3]^{5-}$ towards its disproportionation is examined from the thermodynamic view. In the disproportionation of the uranyl(V) species, a proton source to remove the axial oxygen atoms from the resulting uranium(IV) is required. In basic carbonate system, the most probable proton source should be HCO_3^- . Therefore, the disproportionation equilibrium of $[U^VO_2(CO_3)_3]^{5-}$ to $[U^{VI}O_2^-(CO_3)_3]^{4-}$ and $[U^{IV}(CO_3)_5]^{6-}$ can be written as,

$$2[U^{V}O_{2}(CO_{3})_{3}]^{5-} + 4HCO_{3}^{-} \rightleftharpoons [U^{V}O_{2}(CO_{3})_{3}]^{4-} + [U^{V}(CO_{3})_{5}]^{6-} + 2CO_{3}^{2-} + 2H_{2}O.$$
(3.3)

To obtain Eq. 3.3, the following equilibria are combined.

$$2U^{V}O_{2}^{+} + 4H^{+} \rightleftharpoons U^{VI}O_{2}^{2+} + U^{4+} + 2H_{2}O$$

$$\log K_{34}^{\circ} = 6.070 \pm 0.047$$
(3.4)

$$U^{V}O_{2}^{+} + 3CO_{3}^{2-} \rightleftharpoons [U^{V}O_{2}(CO_{3})_{3}]^{5-}$$

$$\log K_{3,5}^{\circ} = 6.950 \pm 0.360$$
(3.5)

3.1. Spectroelectrochemistry of $[U^{VI}O_2(CO_3)_3]^{4-}$ in Aqueous Solution

$$U^{VI}O_2^{2+} + 3CO_3^{2-} \rightleftharpoons [U^{VI}O_2(CO_3)_3]^{4-}$$

$$\log K_{3.6}^{\circ} = 21.840 \pm 0.040$$
(3.6)

63

$$U^{4+} + 5CO_3^{2-} \rightleftharpoons [U^{IV}(CO_3)_5]^{6-}$$

$$\log K_{37}^{\circ} = 34.000 \pm 0.900$$
(3.7)

$$CO_3^{2-} + H^+ \rightleftharpoons HCO_3^-$$
 (3.8)
 $\log K_{3.8}^\circ = 10.329 \pm 0.020$

where log $K_{3,n}$ ($n = 3 \sim 8$) is the logarithmic equilibrium constant of Eq. 3.*n* at 298.15 K, 0.1 MPa, and zero ionic strength.¹³ Thus,

Factor
$$\begin{split} & \log K_{3,n}^{\circ} \\ & + (2U^{V}O_{2}^{+} + 4H^{+} \rightleftharpoons U^{VI}O_{2}^{2+} + U^{4+} + 2H_{2}O) 6.070 \pm 0.047 \\ & -2 (U^{V}O_{2}^{+} + 3CO_{3}^{2-} \rightleftharpoons [U^{V}O_{2}(CO_{3})_{3}]^{5-}) 6.950 \pm 0.360 \\ & + (U^{VI}O_{2}^{2+} + 3CO_{3}^{2-} \rightleftharpoons [U^{VI}O_{2}(CO_{3})_{3}]^{4-}) 21.840 \pm 0.040 \\ & + (U^{4+} + 5CO_{3}^{2-} \rightleftharpoons [U^{VI}(CO_{3})_{5}]^{6-}) 34.000 \pm 0.900 \\ & -4 (CO_{3}^{2-} + H^{+} \rightleftharpoons HCO_{3}^{-}) 10.329 \pm 0.020 \\ \hline 2[U^{V}O_{2}(CO_{3})_{3}]^{5-} + 4HCO_{3}^{-} \rightleftarrows [U^{VI}O_{2}(CO_{3})_{3}]^{4-} + [U^{IV}(CO_{3})_{5}]^{6-} + 2CO_{3}^{2-} + 2H_{2}O \\ & \log K_{3,3}^{\circ} = 6.694 \pm 0.017. \end{split}$$

The resulting value of log $K_{3,3}^{\circ}$ is at zero ionic strength.¹ On the other hand, the present system of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ contains 1 M Na₂CO₃. To apply the result of the equilibrium calculation to the system of interest, the ionic strength correction must be performed for log $K_{3,3}^{\circ}$. According to the theory of the ionic strength correction described in "*Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium*",¹³⁾ the equilibrium constant of Eq. 3.3 at ionic strength I_m ($K_{3,3}^{I_m}$) can be given as,

$$\log K_{3,3}^{I_m} = \log K_{3,3}^{\circ} + \Delta z^2 \cdot D - \Delta \epsilon \cdot m_{\text{Na}^+}$$
(3.9)

where,

$$\Delta z^{2} = [z_{U(VI)}^{2} + z_{U(IV)}^{2} + 2z_{CO_{3}^{2-}}^{2}] - [2z_{U(V)}^{2} + 4z_{HCO_{3}^{-}}^{2}] = 6$$
(3.10)

$$D = \frac{0.509 \sqrt{I_m}}{1 + 1.5 \sqrt{I_m}} \tag{3.11}$$

$$\Delta \epsilon = [\epsilon_{\mathrm{U}(\mathrm{VI}),\mathrm{Na}^+} + \epsilon_{\mathrm{U}(\mathrm{IV}),\mathrm{Na}^+} + 2\epsilon_{\mathrm{CO}_3^-,\mathrm{Na}^+}] - [2\epsilon_{\mathrm{U}(\mathrm{V}),\mathrm{Na}^+} + 4\epsilon_{\mathrm{HCO}_3^-,\mathrm{Na}^+}]. \tag{3.12}$$

Here, *D* is the Debye–Hückel term, m_{Na^+} is the concentration of Na⁺ in molality (mol·kg⁻¹, m), and z_i is the charge of ion *i* (U(VI), U(IV), and U(V) as *i* correspond to $[U^{\text{VI}}O_2(\text{CO}_3)_3]^{4-}$, $[U^{\text{IV}}(\text{CO}_3)_5]^{6-}$, and $[U^{\text{V}}O_2(\text{CO}_3)_3]^{5-}$, respectively). The notation, ϵ_{i,Na^+} , is the specific ion interaction coefficient between ion *i* and Na⁺. To calculate $\Delta \epsilon$ in Eq. 3.9, the reported ϵ_{i,Na^+}

¹In the definition, the standard state for a solute B in a solution is hypothetical solution, at the standard state pressure, in which $m_{\rm B} = m^{\circ} = 1 \text{ mol} \cdot \text{kg}^{-1}$, and in which the activity coefficient $\gamma_{\rm B}$ is unity. However, the usual experimental system is not such hypothetical one. Hence, correction of an equilibrium constant in an ionic medium of interest is required. The details have been presented by Grenthe *et al.*^{12, 13}

values are available; $\epsilon_{U(VI),Na^+} = -0.01 \pm 0.11$, $\epsilon_{U(IV),Na^+} = -0.30 \pm 0.15$, $\epsilon_{CO_3^{2^-},Na^+} = -0.08 \pm 0.03$, $\epsilon_{U(V),Na^+} = -0.62 \pm 0.15$, and $\epsilon_{HCO_3^-,Na^+} = 0.00 \pm 0.02$.¹³⁾ As a result, the following equation (Eq. 3.13) was obtained from Eq. 3.9.

$$\log K_{33}^{l_m} = (6.694 \pm 0.017) + 6D - (0.77 \pm 0.02)m_{\rm Na^+}$$
(3.13)

The value of I_m in an aqueous medium is calculated by Eq. 3.14.

$$I_m = \frac{1}{2} \sum z_i^2 m_i \tag{3.14}$$

The result in 1 M Na₂CO₃ aq. is $I_m = 3.03$ m with a conversion factor from molarity (mol·dm⁻³, M) to molality (m), 1.0094 for 1 M Na₂CO₃.¹³⁾ Thus, the *D* value in Eq. 3.11 is calculated as 0.245. Further, the m_{Na^+} value in 1 M Na₂CO₃ is evaluated as 2.02 m. Hence, in 1 M Na₂CO₃ aqueous solution,

$$\log K_{33}^{3.03m} = 6.61 \pm 0.01$$

was obtained from Eq. 3.13.

At $[[U^VO_2(CO_3)_3]^{5-}] = 5 \times 10^{-2}$ m, $I_m = 3.03$ m (1 M = 1.01 m Na₂CO₃), and pH = 12 ($[HCO_3^-] = 1.56 \times 10^{-3}$ m),² which is the typical experimental condition to prepare $[U^VO_2(CO_3)_3]^{5-}$ in this study, the mass action law for Eq. 3.3 is expressed as,

$$10^{(6.61\pm0.01)} = \frac{\left[[U^{VI}O_2(CO_3)_3]^{4-} \right] \left[[U^{IV}(CO_3)_5]^{6-} \right] \cdot 1.01^2}{(5\times10^{-2})^2 \cdot (1.56\times10^{-3})^4}$$

The stoichiometry of $[U^{VI}O_2(CO_3)_3]^{4-}$ in Eq. 3.3 is same as $[U^{IV}(CO_3)_5]^{6-}$. Thus, the concentrations of these U(VI) and -(IV) species were evaluated as $(2.46\pm0.02)\times10^{-4}$ m, respectively. Consequently, the mole fraction of $[U^VO_2(CO_3)_3]^{5-}$ in Eq. 3.3 at 1 M (= 1.01 m) Na₂CO₃ system at pH = 12 can be estimated as 99%. Therefore, the stability of $[U^VO_2(CO_3)_3]^{5-}$ towards its disproportionation to $[U^{VI}O_2(CO_3)_3]^{4-}$ and $[U^{IV}(CO_3)_5]^{6-}$ in the present experimental condition has been confirmed thermodynamically. As seen from Eq. 3.3, the total concentration of Na₂CO₃ and the balance between CO₃²⁻ and HCO₃⁻, which depends on the pH value, are the most important factors for the stability of $[U^{V}O_2(CO_3)_3]^{5-}$ in the aqueous system.

$$\log K_{3.8}^{I_m} = \log K_{3.8}^{\circ} + [z_{\text{HCO}_3^-}^2 - (z_{\text{CO}_3^-}^2 + z_{\text{H}^+}^2)] - [\epsilon_{\text{HCO}_3^-,\text{Na}^+} - \epsilon_{\text{CO}_3^{--},\text{Na}^+}]m_{\text{Na}^+}$$

= (10.329 ± 0.020) - 4D - (0.08 ± 0.02)m_{\text{Na}^+}

²Concentration of HCO_3^- ([HCO_3^-]) was obtained by the ionic strength correction for Eq. 3.8 in a similar manner to Eq. 3.9 as follows.

At $I_m = 3.03 \text{ m} (D = 0.245)$ and $m_{\text{Na}^+} = 2.02 \text{ m}$, $\log K_{3.8}^{3.03\text{m}}$ equals to 9.19 ± 0.01 . Since the pH value is expressed by pH = $\log K_{3.8}^{I_m} + \log[\text{CO}_3^{-7}]/[\text{HCO}_3^{-7}]$, $[\text{HCO}_3^{-7}]$ is calculated as 1.56×10^{-3} m at pH = 12 and total $[\text{Na}_2\text{CO}_3] = 1.01 \text{ m} (= 1 \text{ M})$.

3.2 Kinetics of Ligand Exchange Reaction in $[U^VO_2(CO_3)_3]^{5-1}$

Little information is available concerning kinetics of ligand exchange and substitution reactions in uranyl(V) complexes, in spite of many data for uranyl(VI) complexes.^{66, 67, 69–74, 77–82)} Here, the ligand exchange reaction in $[U^VO_2(CO_3)_3]^{5-}$ was studied by using ¹³C NMR spectroscopy.

3.2.1 Experimental Details

Preparation of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$. All operations were performed under argon atmosphere in a glove-box. A D₂O (99.8 atom% D, ACROS) solution containing $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ (4.598 × 10⁻² M) and Na₂¹³CO₃ (1.003 M, 99 atom% ¹³C, ISOTEC) was prepared by potentiostatic electrochemical reduction of $[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ on a Pt-plate working electrode at -0.950 V *vs.* Ag/AgCl. The potential applied on the working electrode was controlled by BAS CV-50W voltammetric analyzer. The sample solution was deoxygenated by passing argon gas through the solution for at least 3 h prior to the preparation of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$. The completeness of the reduction from $[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ to $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ was confirmed by spectroscopic techniques (UV-visible absorption and ¹³C NMR spectroscopies). The pD ($-\log[D^{+}]$) value of the sample solution was 11.96. After the preparation of $[U^{V}O_{2-}(CO_{3})_{3}]^{5-}$, the solution in this sample tube was cooled by ice-NaCl mixture, and then the gases over the solution was replaced by argon gas again.

Methods. UV-visible absorption and ¹³C NMR spectra were measured by using SHIMADZU UV-3150 spectrophotometer and JEOL JNM-LA300WB NMR spectrometer (¹H: 300.4 MHz, ¹³C: 75.45 MHz), respectively.

3.2.2 Results and Discussion

The D₂O solution of the uranyl(V) carbonate prepared by the electrochemical reduction of $[U^{VI}O_2(CO_3)_3]^{4-}$ was colorless as reported by Cohen¹⁴⁷⁾ and Wester *et al.*¹⁴⁸⁾ The ¹³C NMR spectra of D₂O solution containing the uranyl(V) carbonate (4.598 × 10⁻² M) and Na₂CO₃ (1.003 M) were measured at different temperatures. The resulting NMR spectra in the range from 273 to 313 K are shown in Figure 3.4. At 273 K, two sharp singlet peaks were observed at 169.13 and 106.70 ppm. As reported previously,^{71,72,162)} the peak at 169.13 ppm is the result of fast exchange reaction between free CO₃²⁻ and DCO₃⁻ (bicarbonate). Another singlet peak at 106.70 ppm can be assigned to the coordinated CO₃²⁻ in $[U^VO_2(CO_3)_3]^{5-}$. Such a singlet peak indicates that the coordinated CO₃²⁻ ligands are immersed in the equivalent chemical environment. From the areas of the peaks of the free and coordinated CO₃²⁻, the coordination number of CO₃²⁻ was evaluated 2.8 ± 0.1. This result agrees with the stoichiometry of $[U^VO_2(CO_3)_3]^{5-}$ reported previously.^{149,153} If the sample solution is mixture of the uranyl(V) carbonate, $[U^{VI}O_2(CO_3)_3]^{4-}$, and CO₃²⁻, another signal due to the uranyl(VI) complex must be observed at 168.22 ppm as shown in Figure 3.5. However, even in the end of the ¹³C NMR measurement for Figure 3.4, the signal of $[U^{VI}O_2(CO_3)_3]^{4-}$ (168.22 ppm) was not observed.

As can be seen from Figure 3.4, the line-widths of the two signals corresponding to the free and coordinated CO_3^{2-} increase with increasing temperature. This is the result of an

Figure 3.4. ¹³C NMR spectra of D₂O solution containing $[U^VO_2(CO_3)_3]^{5-}$ (4.598 × 10⁻² M) and Na₂CO₃ (1.003 M, pD = 11.96).

Figure 3.5. ¹³C NMR spectrum of D₂O solution containing $[U^VO_2(CO_3)_3]^{5-}$, $[U^{VI}O_2(CO_3)_3]^{4-}$, and 1 M Na₂CO₃ at 273 K. Inset shows the spectrum magnified in the range from 166 to 171 ppm.

increase in the rate of the following ligand exchange reaction:

$$[U^{V}O_{2}(CO_{3})_{3}]^{5-} + *CO_{3}^{2-} \rightleftharpoons [U^{V}O_{2}(CO_{3})_{2}(*CO_{3})]^{5-} + CO_{3}^{2-}$$
(3.15)

where the asterisk is a typographical distinction only. To analyze the rate of the CO_3^{2-} exchange by using the NMR line-broadening method, line-widths at half-height of the free CO_3^{2-} signal in the presence and absence of $[U^VO_2(CO_3)_3]^{5-}$ in the range from 273 to 333 K were measured. Figure 3.6 shows a semilogarithmic plot of $(T_{2obs}^{-1} - T_{2n}^{-1})P_L/P_M$ against the reciprocal temperature. T_{2obs} and T_{2n} are the transverse relaxation times of free CO_3^{2-} in the presence and absence of $[U^VO_2(CO_3)_3]^{5-}$, respectively, and are related with the line-width $(\Delta \nu)$ at half-height by $T_{2obs}^{-1} = \pi \Delta \nu_{obs}$ and $T_{2n}^{-1} = \pi \Delta \nu_n$ (subscriptions of $\Delta \nu$ are same with those of the respective T_2). P_L and P_M are molar fractions of the free and coordinated CO_3^{2-} , respectively. Since the uranyl(V) ion has one unpaired electron in the 5f-orbital of uranium

Figure 3.6. Plot of $(T_{2obs}^{-1} - T_{2n}^{-1})P_L/P_M vs. 1/T$ for the exchange of CO_3^{2-} in $[U^VO_2(CO_3)_3]^{5-}$. Experimental results are shown by +; solid line: best fit of Eq. 3.16

(*i.e.*, 5f¹ configuration), $[U^VO_2(CO_3)_3]^{5-}$ is paramagnetic. Hence, the temperature dependence of $(T_{2obs}^{-1} - T_{2n}^{-1})P_L/P_M$ for the present system can be described by Eq. 3.16.^{65, 182, 183)}

$$(T_{2\text{obs}}^{-1} - T_{2n}^{-1})\frac{P_L}{P_M} = \tau_M^{-1} \left[\frac{T_{2M}^{-2} + T_{2M}^{-1} \tau_M^{-1} + \Delta \omega_M^2}{(T_{2M}^{-1} + \tau_M^{-1})^2 + \Delta \omega_M^2} \right]$$
(3.16)

where T_{2M} , τ_M , and $\Delta\omega_M$ are the transverse relaxation time of coordinated CO_3^{2-} , mean lifetime of coordinated CO_3^{2-} , and the difference between chemical shifts of the free and coordinated CO_3^{2-} , respectively. According to a review by Stengle and Langford,¹⁸³⁾ it is reasonable to conclude that the transverse relaxation time of the free CO_3^{2-} in the temperature range from 273 to 303 K (*i.e.*, 3.66 ~ 3.30×10^{-3} K⁻¹) is mainly controlled by a mean lifetime of coordinated CO_3^{2-} (τ_M).³ The relationship between τ_M and the first-order exchange rate constant (k_{ex}) with temperature is

$$\tau_M^{-1} = k_{\rm ex} = \frac{k_{\rm B}T}{h} \exp\left[-\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\ddagger}}{R}\right].$$
(3.17)

Therefore, from the Eyring plot in this temperature range, the activation enthalpy (ΔH^{\ddagger}) and entropy (ΔS^{\ddagger}) in Eq. 3.15 could be estimated as 61.8 kJ·mol⁻¹ and 20 J·mol⁻¹·K⁻¹, respectively.

For more precise evaluation of the activation parameters in Eq. 3.15, the nonlinear leastsquare fit of Eq. 3.16 to the experimental results in Figure 3.6 were performed by the following process. The temperature dependence of T_{2M} and $\Delta \omega_M$ is assumed to be given by Eqs. 3.18 and 3.19, respectively.^{184, 185)}

$$T_{2M}^{-1} = C_M \exp\left(\frac{E_M}{RT}\right) \tag{3.18}$$

$$\Delta\omega_M = \frac{C_\omega}{T} \tag{3.19}$$

³Details are described in Appendix F, "NMR relaxation times in paramagnetic solutions".

The kinetic parameters were determined by the nonlinear least-squares fit of $(T_{2obs}^{-1} - T_{2n}^{-1})P_L/P_M$ data to the equation obtained by substitution of Eqs. 3.17–3.19 into Eq. 3.16. The C_M , E_M , and C_{ω} values were roughly estimated as $2.57 \times 10^3 \text{ s}^{-1}$, 4.80 kJ·mol⁻¹, and 2.51 × $10^5 \text{ rad} \cdot \text{s}^{-1} \cdot \text{K}^{-1}$, respectively. When the values of C_M and E_M were fixed to $2.57 \times 10^3 \text{ s}^{-1}$ and 4.80 kJ·mol⁻¹, respectively, the nonlinear least-squares fit to Eq. 3.16 gave a minimum error. The $\Delta \omega_M$ value was found to have no influence on the fit even in $\Delta \omega_M = 0$. This means that the line-widths in the range from 273 to 333 K in Figure 3.6 are independent of $\Delta \omega_M$. Subsequently, the activation parameters in Eq. 3.15 were calculated as $\Delta H^{\ddagger} = 62.0 \pm 0.7 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S^{\ddagger} = 22 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. The standard deviation in this fitting process was 0.03.

The resulting activation parameters are consistent with those obtained by the Eyring plot in the range from 273 to 303 K ($\Delta H^{\ddagger} = 61.8 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S^{\ddagger} = 20 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, previous paragraph). Using these values and Eq. 3.17, the k_{ex} value of Eq. 3.15 at 298 K was evaluated as $1.13 \times 10^3 \text{ s}^{-1}$. This is the first report of a rate constant for ligand exchange reaction in uranyl(V) complexes.

It should be noted that the exchange reaction between the free and coordinated CO_3^{2-} in $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ is about 10² times faster and 10⁵ times slower than those in $[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ and $[Pu^{VI}O_2(CO_3)_3]^{4-}$, in which the exchange reactions follow dissociative mechanisms.^{71,186)} Their activation parameters ($\Delta H^{\ddagger}/kJ \cdot mol^{-1}$ and $\Delta S^{\ddagger}/J \cdot mol^{-1} \cdot K^{-1}$) are 82 and 50 for [U^{VI}O₂- $(CO_3)_3]^{4-}$, and 34 and 31 for $[Pu^{VI}O_2(CO_3)_3]^{4-}$, respectively. To clarify the mechanism *i.e.*, the rate-determining step of Eq. 3.15, the dependence of k_{ex} on free CO_3^{2-} concentration should be examined. For this requirement, the preparation of $[U^VO_2(CO_3)_3]^{5-}$ was attempted in D₂O solutions containing Na₂CO₃ (0.2 M, 0.5 M) by using same electrochemical technique. Unfortunately, black precipitate was formed during the bulk electrolysis of $[U^{VI}O_2(CO_3)_3]^{4-}$ in such conditions. Consequently the pure solution of $[U^VO_2(CO_3)_3]^{5-}$ has not been obtained in the lower concentrations of Na₂CO₃. Therefore, the dependence of k_{ex} on free CO₃²⁻ could not be studied. However, the positive value of ΔS^{\ddagger} (22 ± 3 J·mol⁻¹·K⁻¹) in Eq. 3.15 suggests that the CO_3^{2-} exchange reaction in $[U^VO_2(CO_3)_3]^{5-}$ also occurs through the dissociative mechanism. This suggestion should be supported by the saturated coordination sites in the equatorial plane of $[U^VO_2(CO_3)_3]^{5-}$, *i.e.*, there is no space for the additional CO_3^{2-} to $[U^VO_2(CO_3)_3]^{5-}$. Hence, it seems reasonable to assume that Eq. 3.15 proceeds through the dissociative mechanism.

It is likely that the difference in the dissociation rates (k_{ex} at 298 K) in [U^VO₂(CO₃)₃]^{5–} (1.13 × 10³ s⁻¹) and [U^{VI}O₂(CO₃)₃]^{4–} (13 s⁻¹) is related to the bond strength between U and CO₃^{2–}. This can be supported by the third stepwise formation constant (log K_3) of the following reaction:

$$[\mathrm{UO}_2(\mathrm{CO}_3)_2]^{n-4} + \mathrm{CO}_3^{2-} \rightleftharpoons [\mathrm{UO}_2(\mathrm{CO}_3)_3]^{n-6}$$
(3.20)

where *n* is equal to 1 and 2 for uranyl(V) and -(VI), respectively. According to the comprehensive study by Grenthe *et al.*,¹²⁾ the second and third gross formation constants of the uranyl(VI) carbonate $(\log \beta_2 \text{ and } \log \beta_3)$ in $I = \frac{1}{2} \sum m_i z_i^2 = 3.0 \ (m_i: \text{ molality of ion } i, z_i: \text{ charge of ion } i;$ this value of the ionic strength (*I*) corresponds to 1.0 M Na₂CO₃) are 16.20 and 22.61, respectively. Therefore, the log K_3 values of uranyl(VI) (n = 2) in 1.0 M Na₂CO₃ (I = 3.0) is 6.41. On the other hand, there are no direct references for uranyl(V) (n = 1). However, assuming that the log K_3 value is similar to that of the isovalent neptunyl(V) carbonate in $I = 3.0 \ (\log \beta_2 = 8.15, \log \beta_3 = 10.46)$, the log K_3 value of the uranyl(V) carbonate might be near to 2.3, which is 10⁴ times smaller than that of uranyl(VI). Furthermore, the EXAFS study reported by Docrat *et al.*¹⁵³ shows that the bond distance between U and O of coordinated $\text{CO}_3^{2^-}$ in $[\text{U}^{V}\text{O}_2(\text{CO}_3)_3]^{5^-}$ (2.50 ± 0.02 Å) is 0.07 Å longer than that in $[\text{U}^{VI}\text{O}_2(\text{CO}_3)_3]^{4^-}$ (2.43 ± 0.02 Å). These data suggest that the dissociation of $\text{CO}_3^{2^-}$ from $[\text{U}^{V}\text{O}_2(\text{CO}_3)_3]^{5^-}$ occurs more readily than from $[\text{U}^{VI}\text{O}_2(\text{CO}_3)_3]^{4^-}$. In fact, the ΔH^{\ddagger} value of Eq. 3.15 (62.0 ± 0.7 kJ·mol⁻¹) is much smaller than the corresponding reaction in $[\text{U}^{VI}\text{O}_2(\text{CO}_3)_3]^{4^-}$ (82 kJ·mol⁻¹), indicating a weaker bonding of the leaving $\text{CO}_3^{2^-}$ in $[\text{U}^{V}\text{O}_2(\text{CO}_3)_3]^{5^-}$ than $[\text{U}^{VI}\text{O}_2(\text{CO}_3)_3]^{4^-}$. It is likely that such a relationship between the metal–ligand bond strengths in uranyl(V) and -(VI) complexes is also true for the nonaqueous systems of uranyl(V) and -(VI) complexes. In Sections 4.1 and 4.2, the unidentate ligand (L = DMSO, DMF) in $[\text{U}^{V}\text{O}_2(\text{saloph})\text{L}]^-$ dissociates more easily than that in $\text{U}^{VI}\text{O}_2(\text{saloph})\text{L}$ in the non-aqueous system. The proposed dissociative mechanism for Eq. 3.15 is also consistent with the result of a quantum chemical study on the mechanism of water exchange reactions in $[\text{U}^{V}\text{O}_2(\text{H}_2\text{O})_5]^+$ and $[\text{U}^{VI}\text{O}_2(\text{H}_2\text{O})_5]^{2^+}$ by Vallet *et al.*^{83,187)} In such studies, the authors suggested that the dissociative mechanism is favored in the uranyl(V) aqua ions as a result of the weaker metal–ligand bond strength.

Chapter 4

Electrochemical and Spectroelectrochemical Studies on Uranyl(VI) Complexes in Nonaqueous Systems

S ince one of the goals in this study is to observe pure uranyl(V) complexes in aqueous and nonaqueous systems by using electrochemical reduction of corresponding uranyl(VI) ones, their electrochemical properties must be studied. For the aqueous system, the UV-visible spectroelectrochemical study on $[U^{V}O_{2}(CO_{3})_{3}]^{5-}/[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$ has been performed and the formal potential of this redox couple was determined. On the other hand, there are no reports for stable uranyl(V) species in nonaqueous systems still now. However, an insight how to produce the stable uranyl(V) species in such systems has been proposed in the previous study by Ikeda *et al.*¹⁴⁰⁻¹⁴² According to them, the uranyl(VI) complexes coordinated with multidentate ligand(s) have a tendency to form the more stable uranyl(V) complexes through their electrochemical reductions than those with unidentate ligands such as $[U^{VI}O_{2}L_{5}]^{2+}$ (L = dimethyl sulfoxide, *N,N*-dimethylformamide). In this study, *N,N*'-disalicylidene-*o*-phenylenediaminate (saloph) and dibenzoylmethanate (dbm) were selected as the multidentate ligands. The uranyl(VI) complexes coordinated by these ligands in the non-aqueous media (U^{VI}O₂(saloph)DMF, U^{VI}O₂(saloph)DMSO, and U^{VI}O₂(dbm)₂DMSO) have already been characterized in Chapter 2.

4.1 U^{VI}O₂(saloph)DMF in *N*,*N*-Dimethylformamide

4.1.1 Experimental Details

Electrochemical Measurements. Cyclic voltammetry (CV) was used for electrochemical investigations. The CV measurements were carried out at 25° C under dry argon atmosphere using BAS CV-50W voltammetric analyzer. The three-electrode system, which consisted of a Pt working electrode (BAS 002013, electrode surface area: 0.020 cm²), a Pt wire counter electrode (BAS 002222) and an Ag/Ag⁺ (BAS 002025 RE-5, 0.01 M AgNO₃ + 0.1 M tetra*n*-ammonium perchlorate in acetonitrile) reference electrode, was utilized. As an internal potential standard for nonaqueous systems, a ferrocene/ferrocenium ion redox couple (Fc/Fc⁺) was used.¹⁸⁸⁾ The solvents for CV mesumrements (DMF and dichloromethane) were distilled (*in vacuo* for DMF) after drying with CaH₂ and then stored over molecular sieves 4A (Wako). Tetra-*n*-butylammonium perchlorate (TBAP, Fluka, electrochemical grade) was used as a supporting electrolyte without further purification. To remove the dissolved oxygen, argon gas dried by passing through a CaCl₂ tube was purged through all sample solutions for at least 30 min prior to starting all electrochemical measurements. In the case that dichloromethane was used as solvent, the argon gas was soaked with dichloromethane by using a gas bubbler to prevent change of solution composition.

UV-visible Spectroelectrochemical Measurements. The UV-visible spectroelectrochemical measurements were also performed for $U^{VI}O_2(saloph)DMF$ in a similar manner to those for $[U^{VI}O_2(CO_3)_3]^{4-}$ (Section 3.1.1). The spectrophotometer used here was Agilent 8453 diode-array spectrophotometer. The Ag/Ag⁺ (BAS 002025 RE-5) reference electrode was connected to the sample solution without the liquid junction filled by a blank solution (*cf.* Figure 3.1). The effective optical path length of the OTTLE cell was spectrophotometrically calibrated as 2.76×10^{-2} cm. Other details were same as those described in Section 3.1.1.

4.1.2 **Results and Discussion**

Cyclic voltammograms of U^{VI}O₂(saloph)DMF (8.71 × 10⁻⁴ M) in DMF containing TBAP (0.10 M) are shown in Figure 4.1. Peaks (P_{cf} and P_{af1}) of one redox couple and an uncoupled oxidation peak (P_{af2}) are observed at around -1.69 (E_{pcf}), -1.56 (E_{paf1}), and -1.00 (E_{paf2}) V vs. Fc/Fc⁺, respectively. Ratios of peak currents at P_{af1} and P_{cf} (i_{paf1}/i_{pcf}) were calculated from the semiempirical equation, Eq. 4.1, derived by Nicholson.¹⁸⁹

$$\frac{i_{\rm pa}}{i_{\rm pc}} = \frac{i_{\rm pa0}}{i_{\rm pc0}} + \frac{0.485 \times i_{\rm sp0}}{i_{\rm pc0}} + 0.086 \tag{4.1}$$

where i_{pa0} , i_{pc0} , and i_{sp0} are currents measured with respect to the zero current axis at anodic peak potential, cathodic peak potential, and switching potential, respectively. To evaluate the ratio, i_{paf1}/i_{pcf} , the variables i_{pa} and i_{pc} in Eq. 4.1 were replaced by i_{paf1} and i_{pcf} , respectively. The electrochemical data from the cyclic voltammograms for various scan rates (v, V·s⁻¹) are summarized in Table 4.1. The peak separation ($\Delta E_p = |E_{pcf} - E_{paf1}|$) increases from 0.101 to 0.168 V with an increase in v. The formal potential $E^{\circ\prime}$ (($E_{paf1} + E_{pcf}$)/2) were constant at $-1.626 \pm 0.005 vs$. Fc/Fc⁺. The i_{paf1}/i_{pcf} values are smaller than 1 and increase with an increase in v. Furthermore, any other redox waves except for P_{cf1}, P_{af1}, and P_{af2} were not observed even in the multiple scanned cyclic voltammogram of U^{VI}O₂(saloph)DMF under the

Figure 4.1. Cyclic voltammograms of U^{VI}O₂(saloph)DMF (8.71×10^{-4} M) in DMF containing TBAP (0.10 M) measured in the potential range from -0.119 to -2.019 V at different scan rates (v = 0.07 - 0.35 V·s⁻¹). Initial scan direction: cathodic.

same condition with Figure 4.1. From these results, it is suggested that the electrochemical reaction of $U^{VI}O_2(saloph)DMF$ in DMF is a quasi-reversible system accompanied by a successive reaction of reductant at E_{pcf} . If the electrochemical reduction of $U^{VI}O_2(saloph)DMF$ observed in Figure 4.1 is two-electron process, the reductant must be U(IV) species, which forms an U^{4+} complex or $U^{IV}O_2$ precipitate. In both cases, the cyclic voltammogram should show a quite irreversible aspect, because the reduction from $U^{VI}O_2^{2+}$ to U^{4+} is accompanied by a dissociation of the axial oxygen atoms from uranium and the solubility of $U^{IV}O_2$ is very low. Therefore, the reductant at E_{cf} in Figure 4.1 should be $[U^{V}O_2(saloph)DMF]^-$. This uranyl(V) complex produces an electrochemical active substance oxidized at E_{paf2} .

The UV-visible spectroelectrochemical measurements were carried out for the DMF solution containing U^{VI}O₂(saloph)DMF (9.33 × 10⁻⁴ M) and TBAP (0.30 M) to examine the electrochemical reaction mechanism. The UV-visible absorption spectra measured at the applied potentials in the range from 0 to -1.785 V vs. Fc/Fc⁺ are shown in Figure 4.2. The spectral changes with a stepwise decrease in the applied potential converged at -1.785 V vs.

		10010 1.1.	Licenoen	enneur aut	\mathbf{U}	(Suropin)D1			
$v/V \cdot s^{-1}$	$E_{\rm pcf}/V$	$E_{\rm paf1}/{\rm V}$	$E_{\rm paf2}/{\rm V}$	$E_{\rm pcf/2}/{\rm V}$	$i_{\rm pcf}/\mu A$	$i_{\rm pc0}/\mu A$	$i_{\rm pa0}/\mu{ m A}$	$i_{ m sp0}/\mu m A$	$i_{\rm paf1}/i_{\rm pcf}$
0.07	-1.673	-1.572	-1.058	-1.607	2.130	2.415	0.879	1.249	0.70
0.09	-1.679	-1.569	-1.037	-1.611	2.412	2.717	1.075	1.337	0.72
0.11	-1.682	-1.569	-1.020	-1.613	2.662	2.984	1.256	1.413	0.74
0.13	-1.687	-1.565	-1.012	-1.616	2.871	3.227	1.406	1.528	0.75
0.15	-1.689	-1.559	-1.002	-1.617	3.078	3.452	1.553	1.627	0.76
0.20	-1.695	-1.554	-0.987	-1.621	3.513	3.936	1.855	1.847	0.78
0.25	-1.698	-1.552	-0.981	-1.625	3.861	4.362	2.104	2.083	0.80
0.30	-1.703	-1.546	-0.975	-1.628	4.209	4.750	2.325	2.284	0.81
0.35	-1.710	-1.542	-0.968	-1.631	4.498	5.094	2.516	2.478	0.82

Table 4.1. Electrochemical data of U^{VI}O₂(saloph)DMF in DMF

All potentials are versus Fc/Fc⁺.

Figure 4.2. UV-visible absorption spectra measured at the applied potentials in the range from 0 to -1.785 V vs. Fc/Fc⁺ for U^{VI}O₂(saloph)DMF (9.33 × 10⁻⁴ M) in DMF solution containing TBAP (0.30 M). Wavelength range: (a) 260–600 nm, (b) 465–540 nm. Optical path length: 2.76×10^{-2} cm.

Fc/Fc⁺. As seen from this figure, any clear isosbestic points are not observed. This is the evidence that the reduction of U^{VI}O₂(saloph)DMF is followed by a successive reaction. When the potential applied on the OTTLE returned to 0 V vs. Fc/Fc⁺, the UV-visible absorption spectrum of the sample solution almost completely reproduced the initial one. This phenomenon is consistent with the result of multiple-scanned cyclic voltammograms for U^{VI}O₂(saloph)DMF in DMF. Thus, the possibility of the two-electron reduction of U^{VI}O₂(saloph)-DMF can be neglected, and the oxidant at E_{paf2} in Figure 4.1 returns to U^{VI}O₂(saloph)DMF. Consequently, the following reaction mechanism should be reasonable to the coupled peaks of E_{pcf}/E_{paf1} in Figure 4.1.

$$U^{VI}O_2(saloph)DMF + e^- \rightleftharpoons [U^VO_2(saloph)DMF]^-$$
(4.2)

The kinetic analysis was carried out for Eq. 4.2. According to Nicholson,^{190–192)} a standard rate constant (k°) in an electrochemical reaction is calculated by the following equation on the basis of the assumption that diffusion coefficients of an oxidant (D_O) and the corresponding reductant (D_R) are equal.

$$\psi = \frac{k^{\circ}}{[D_{O}\pi(nF/RT)v]^{\frac{1}{2}}}$$
(4.3)

where ψ is the kinetic parameter defined by Nicholson.¹⁹⁰⁾ Since Eq. 4.2 is followed by a successive reaction, this electrochemical process is not reversible in the definition.¹⁹²⁾ Thus, the D_O value was estimated by a theoretical equation (Eq. 4.4) for the cathodic peak current (i_{pc}) in an irreversible system.^{191,192)}

$$i_{\rm pc} = 2.985 \times 10^2 n A C_O^{\circ}(\alpha n_{\rm B})^{\frac{1}{2}} v^{\frac{1}{2}} D_O^{\frac{1}{2}}$$
(4.4)

In Eq. 4.4, A, C_O° , α , and n_B are the surface area of a working electrode, the bulk concentration of the oxidant, the transfer coefficient, and the electron stoichiometry in a rate-determining

process, respectively. The $\alpha n_{\rm B}$ value was obtained as 0.67 in average from Eq. 4.5.¹⁹³⁾

$$\alpha n_{\rm B} = \frac{0.04768}{E_{\rm p/2} - E_{\rm p}} \tag{4.5}$$

where $E_{p/2}$ and E_p are half and full peak potentials and corresponding to $E_{pcf/2}$ and E_{pcf} in Table 4.1, respectively. Hence, the D_O value of U^{VI}O₂(saloph)DMF in DMF was estimated as 3.4×10^{-6} cm²s⁻¹ by Eq. 4.4. According to the previous articles,^{190,191} the ψ values for the present system are in the range from 0.55 ($\nu = 0.07$ V·s⁻¹, $\Delta E_p = 0.101$) to 0.17 ($\nu = 0.35$ V·s⁻¹, $\Delta E_p = 0.168$). Therefore, the k° value for the electrochemical reaction 4.2 is estimated as 2.5×10^{-3} cm·s⁻¹ by using Eq. 4.3.

For the overall reaction mechanism initiated by the electrochemical reaction of $U^{VI}O_2$ -(saloph)DMF in DMF, there are two candidates as follows.

Mechanism 1

$$U^{VI}O_2(\text{saloph})DMF + e^- \rightleftharpoons [U^VO_2(\text{saloph})DMF]^- (E_{pcf}/E_{paf1})$$
 (4.6)

$$[U^{V}O_{2}(saloph)DMF]^{-} \rightleftharpoons [U^{V}O_{2}(saloph)]^{-} + DMF$$
(4.7)

$$[U^{V}O_{2}(saloph)]^{-} \longrightarrow U^{VI}O_{2}(saloph) + e^{-} \quad (E_{paf2})$$

$$(4.8)$$

$$U^{VI}O_2(saloph) + DMF \longrightarrow U^{VI}O_2(saloph)DMF$$
 (4.9)

Mechanism 2

$$U^{VI}O_2(\text{saloph})DMF + e^- \rightleftharpoons [U^VO_2(\text{saloph})DMF]^- (E_{pcf}/E_{paf1})$$
 (4.10)

$$[U^{V}O_{2}(saloph)DMF]^{-} \rightleftharpoons [U^{V}O_{2}(tri-saloph)DMF]^{-}$$
(4.11)

$$[U^{V}O_{2}(\text{tri-saloph})DMF]^{-} \longrightarrow U^{V}O_{2}(\text{tri-saloph})DMF + e^{-} \quad (E_{\text{paf2}})$$
(4.12)

$$U^{VI}O_2(\text{tri-saloph})DMF \longrightarrow U^{VI}O_2(\text{saloph})DMF$$
 (4.13)

In **Mechanism 1**, the successive reaction of $[U^VO_2(saloph)DMF]^-$ is the DMF dissociation (Eq. 4.7). The product in this chemical reaction is $[U^VO_2(saloph)]^-$, which is oxidized to $U^{VI}O_2(saloph)$ at E_{paf2} (Eq. 4.8) and then coordinated by DMF again (Eq. 4.9). In **Mechanism 2**, the successive reaction is dissociation of one part of saloph from $U^VO_2^+$ moiety (tri-saloph means tridentate saloph). The similar reaction mechanisms have been proposed in the electrochemical reactions of $U^{VI}O_2(\beta-diketonato)_2DMF$ systems.^{140–142)}

In all systems of electrochemical reactions (reversible, quasi-reversible, and irreversible), it is theoretically clarified that the reduction (oxidation) peak current (i_p) is proportional to the initial concentration (C°) of oxidant (reductant).^{191, 192)} In **Mechanism 1**, the equilibrium of Eq. 4.7 will shift to right with a decrease in the concentration of free DMF in the solution, and hence the peak current values at E_{paf1} and E_{paf2} will decrease and increase, respectively. On the other hand, such phenomena should not be observed in **Mechanism 2**. Therefore, the CV measurements for U^{VI}O₂(saloph)DMF in DMF and dichloromethane (DM) mixed solvent systems (DMF + DM) should be a probe to determine the correct mechanism. In this study, the cyclic voltammograms of U^{VI}O₂(saloph)DMF (1×10^{-3} M) in DMF + DM (free DMF concentration: 2.95 M, 0.854 M) were measured (*cf.* neat DMF: 12.9 M). In these conditions, the dimerization of U^{VI}O₂(saloph)DMF can be neglected from the value of K_{dim} for Eq. 2.1 described in Chapter 2. The resulting cyclic voltammograms are shown in Figure 4.3.

Figure 4.3. Cyclic voltammograms of U^{VI}O₂(saloph)DMF (a: 9.87×10^{-4} M, b: 9.49×10^{-4} M) in DMF + DM containing TBAP (0.10 M). DMF concentration, a: 2.95 M, b: 0.854 M.

The reduction and oxidation peaks were observed at the same potentials in Figure 4.1. The peak current values at E_{paf1} and E_{paf2} showed the dependence on the concentration of free DMF as predicted from **Mechanism 1**. Hence, it is concluded that the reaction mechanism of U^{VI}O₂(saloph)DMF in the present system is **Mechanism 1**.

After the DMF dissociation in Eq. 4.7, the possibility of the formation of the dinuclear complex containing uranyl(V) ion (*e.g.*, $[U^VO_2(saloph)]_2^{-}$ or $[U^{VI}O_2(saloph)U^VO_2(saloph)]^{-}$) must be discussed, because the dimerization was actually observed in the case of the corresponding uranyl(VI) complex (see Section 2.2). If this is true, the electrochemical reaction of $[U^{VI}O_2(saloph)]_2$ will be in a reversible or quasi-reversible system without any successive reactions. Thus, the CV measurements for $[U^{VI}O_2(saloph)]_2$ in dichloromethane were carried out. The results are shown in Figure 4.4. As can be seen from this figure, the electrochemical reaction of $[U^{VI}O_2(saloph)]_2$ is completely irreversible. This indicates that $[U^VO_2(saloph)]^{-}$ produced in Eq. 4.7 remains as the monomeric form rather than the dimer.

Figure 4.4. Cyclic voltammograms of $[U^{VI}O_2(saloph)]_2$ (4.02 × 10⁻⁴ M) in dichloromethane containing TBAP (0.10 M). Initial scan direction: cathodic.

The reduction (oxidation) peak currents (i_p) are corresponding to the initial concentration (C°) of oxidant (reductant) as shown in Eq. 4.4. Thus, the DMF dissociation constant (K_{disV}) in Eq. 4.7 was roughly estimated from the current values at E_{paf1} and E_{paf2} by the following equation.

$$K_{\rm disV} = \frac{\left[[U^{\rm V}O_2({\rm saloph})]^{-} \right] [DMF]}{\left[[U^{\rm V}O_2({\rm saloph})DMF]^{-} \right]}$$
(4.14)

$$= \frac{C_{\rm U}^{\circ} \times (1 - i_{\rm paf1}/i_{\rm pcf}) \times [\rm DMF]}{C_{\rm U}^{\circ} \times i_{\rm paf1}/i_{\rm pcf}}$$
(4.15)

where $C_{\rm U}^{\circ}$ is the initial concentration of the uranyl(VI) complex. From the peak currents and free DMF concentration in Figures 4.1 and 4.3, the $K_{\rm disV}$ value for Eq. 4.7 was estimated as 5 M in average.

Furthermore, even in the multiple-scanned cyclic voltammograms in all condition with the various concentration of free DMF (12.9 M (neat), 2.95 M, and 0.854 M; Figures 4.1 and 4.3), the reduction peak coupled with P_{af2} was not observed and the respective peak current values at E_{pcf} , E_{paf1} , and E_{paf2} were almost constant. These results suggest that the U^{VI}O₂-(saloph) produced at P_{af2} is rapidly recombined by free DMF in solution. In Section 2.2, it was suggested that the DMF exchange reaction in U^{VI}O₂(saloph)DMF proceeds through the dissociative mechanism, *i.e.*, the rate-determining step of this reaction is the dissociation of DMF from U^{VI}O₂(saloph)DMF. Thus, the intermediate of the DMF exchange reaction in U^{VI}O₂(saloph)DMF is U^{VI}O₂(saloph) and the re-coordinated DMF from U^{VI}O₂(saloph)DMF ($k_{ex} = 1.68 \times 10^3 \text{ s}^{-1}$ at 298 K). This makes the reduction peak coupled with P_{af2} in Figures 4.1 and 4.3 unobservable. Here, overall consistency of the mechanisms including the electrochemical reaction, the dimerization, and the DMF exchange reaction of [U^VO₂(saloph)DMF]⁻ and/or U^{VI}O₂(saloph)DMF were confirmed. A scheme of the whole reaction mechanisms starting from U^{VI}O₂(saloph)DMF is shown in Figure 4.5.

It is obvious that the coordination ability of DMF to the $[U^VO_2(saloph)]^-$ fragment is much weaker than that to $U^{VI}O_2(saloph)$ one, because the coordinated DMF dissociates from $[U^VO_2(saloph)DMF]^-$ even in neat DMF solvent. This phenomenon can be considered to be a result of the lower positive charge on the center uranium in $[U^VO_2(saloph)]^-$ than that in $U^{VI}O_2(saloph)$. Moreover, it can be predicted that the ligand exchange reaction in a uranyl(V) complex is about 10² times faster than that in the corresponding uranyl(VI) complex according to the result for $[U^VO_2(CO_3)_3]^{5-}$ described in Section 3.2. Hence, the first-order rate constant of the DMF exchange reaction in $[U^VO_2(saloph)DMF]^-$ may be estimated as ~10⁵ s⁻¹.

In this section, it has been found out that $[U^VO_2(saloph)DMF]^-$ is not stable even in neat DMF solvent. However, no aspects of the disproportionation of this uranyl(V) complex has also been confirmed. This should be due to the effects of (1) the aprotic solvent DMF (no active proton in the system) and (2) the tetradentate saloph ligand (its strong coordination to the uranyl(V) ion). It can be expected easily that the former prevents the proton-assisted disproportionation of uranyl(V) species such as Eq. 3.3 described in Chapter 3. The latter has also been proposed by Ikeda *et al.*^{140–142)} Indeed, as introduced in Chapter 1, the colloidal precipitate expected as U^VO_2 which is the result of the disproportionation of uranyl(V) species coordinated only with unidentate ligands was confirmed even in the similar aprotic solvent DMSO.¹²⁹⁾ Although the mechanism of the disproportionation of the uranyl(V) species in

aprotic nonaqueous systems have not been clarified, it is clear that the multidentate ligand such as saloph stabilizes its uranyl(V) complex.

Figure 4.5. Scheme of whole reaction mechanisms of $U^{VI}O_2(saloph)DMF$. The asterisk on DMF is typographical distinction only.

4.2 U^{VI}O₂(saloph)DMSO in Dimethyl Sulfoxide

In Section 4.1, the DMF dissociation from the electrochemically produced uranyl(V) complex, $[U^VO_2(saloph)DMF]^-$, was observed. On the other hand, the disproportionation of the uranyl(V) species has not been detected in such a system. Therefore, the preparation of the stable uranyl(V) complexes with saloph can be expected by using a unidentate ligand more strongly binding to $[U^VO_2(saloph)]^-$ than DMF. One of the most potential unidentate ligands instead of DMF is dimethyl sulfoxide (DMSO), because DMSO molecule is also known as the usual unidentate ligand strongly coordinating to $U^{VI}O_2^{2+}$ ion. Actually, the stronger coordination ability of DMSO to $U^{VI}O_2(saloph)$ than DMF has been evidenced in Chapter 2.

4.2.1 Experimental Details

Electrochemical Measurements. The CV measurements for $U^{VI}O_2(saloph)DMSO$ in nonaqueous systems were carried out in a similar manner to those for $U^{VI}O_2(saloph)DMF$. Dimethyl sulfoxide and dichloromethane as the solvents for CV measurements were distilled (*in vacuo* for DMSO) after the drying with CaH₂ and then stored over molecular sieves 4A (Wako).

UV-visible Spectroelectrochemical Measurements. The UV-visible spectroelectrochemical measurements were also performed for $U^{VI}O_2(saloph)DMSO$. The effective optical path length of the OTTLE cell was spectrophotometrically calibrated as 2.90×10^{-2} cm. Other details were same as those described in Section 4.1.1

4.2.2 Results and Discussion

Cyclic voltammograms of U^{VI}O₂(saloph)DMSO (9.55 × 10⁻⁴ M) in DMSO containing TBAP (0.10 M) are shown in Figure 4.6. Coupled peaks (P_{cs} and P_{as}) were observed at around $-1.60 (E_{pcs})$ and $-1.50 V (E_{pas}) vs$. Fc/Fc⁺. In this system, no other redox waves such as P_{af2} in Figure 4.1 were observed. The ratios of peak currents (i_{pas}/i_{pcs}) were calculated by Eq. 4.1. The electrochemical data of U^{VI}O₂(saloph)DMSO are collected in Table 4.2. The ΔE_p between E_{pcs} and E_{pas} increased from 0.093 to 0.108 with an increase in v. The $E^{\circ'}$ value, $E^{\circ'} = (E_{pcs} + E_{pas})/2$, is constant, $-1.550 \pm 0.002 V vs$. Fc/Fc⁺. As can be seen from Table 4.2, the estimated i_{pas}/i_{pcs} values are almost unity without dependence on v. From these results, it is suggested that the electrochemical reaction of U^{VI}O₂(saloph)DMSO is a quasi-reversible

Table 4.2. Electrochemical data of U^{VI}O₂(saloph)DMSO in DMSO

					- 2 (
$v/V \cdot s^{-1}$	$E_{\rm pcs}$ /V	$E_{\rm pas}$ /V	$E_{\rm pcs/2}$ /V	$i_{\rm pcs}/\mu A$	$i_{ m pc0}/\mu{ m A}$	i _{pa0} /μA	i _{sp0} /μA	$i_{\rm pas}/i_{\rm pcs}$
0.05	-1.594	-1.501	-1.530	1.596	1.733	0.986	0.967	0.93
0.07	-1.593	-1.502	-1.530	1.857	2.030	1.154	1.116	0.92
0.09	-1.597	-1.501	-1.532	2.092	2.283	1.289	1.295	0.93
0.11	-1.600	-1.498	-1.533	2.295	2.511	1.404	1.420	0.95
0.13	-1.604	-1.496	-1.535	2.482	2.716	1.511	1.569	0.92
0.15	-1.606	-1.498	-1.536	2.649	2.908	1.608	1.678	0.92

All potentials are versus Fc/Fc⁺.

Figure 4.6. Cyclic voltammograms of U^{VI}O₂(saloph)DMSO (9.55 × 10⁻⁴ M) in DMSO containing TBAP (0.10 M) measured in the potential range from -0.073 to -1.773 V vs. Fc/Fc⁺ at different scan rates (v = 0.05 - 0.15 V·s⁻¹). Initial scan direction: cathodic.

system and has no successive reactions to produce electrochemically active substance in this potential range. The possibility of the two-electron reduction of $U^{VI}O_2(saloph)DMSO$ at E_{pcs} can be ruled out, because of the reversibility of the cyclic voltammograms in Figure 4.6 and the same discussion as Section 4.1. Therefore, the electrochemical reaction in the potential range from -0.073 to -1.773 V vs. Fc/Fc⁺ should be

$$U^{VI}O_2(saloph)DMSO + e^- \rightleftharpoons [U^VO_2(saloph)DMSO]^-.$$
 (4.16)

For a more quantitative discussion on the electrochemical reaction mechanism in this system, the UV-visible spectroelectrochemical measurements were carried out for the U^{VI}O₂-(saloph)DMSO (8.56×10^{-4} M) in DMSO containing TBAP (0.30 M). The UV-visible absorption spectra of this sample solution were measured at various applied potentials in the range from 0 to -1.650 V *vs.* Fc/Fc⁺. The results are shown in Figure 4.7. As can be seen from this figure, the spectral feature changed with a stepwise decrease in the applied potential and converged at -1.650 V *vs.* Fc/Fc⁺. The clear isosbestic points were observed at 271, 387, 479 and 535 nm. This indicates that only one equilibrium exists in this system. Such an equilibrium should be the redox reaction of U^{VI}O₂(saloph)DMSO at E_{pcs}/E_{pas} in Figure 4.6.

To determine the electron stoichiometry (*n*) for the redox couple corresponding to E_{pcs}/E_{pas} in Figure 4.6, the Nernstian plot (Eq. 3.1) was applied for the absorbancies at 344 nm in Figure 4.7. The resulting plot is shown in Figure 4.8. From the intercept and slope of this plot, the values of $E^{\circ\prime}$ and *n* in the present system were calculated as -1.550 ± 0.001 V vs. Fc/Fc⁺ and 1.09 ± 0.02 , respectively. Therefore, it is concluded that the redox couple at E_{pcs}/E_{pas} corresponds to Eq. 4.16 and that the uranyl(V) complex, $[U^VO_2(saloph)DMSO]^-$ stably exists in the DMSO solution.

The kinetic analyses for the electrochemical reaction (Eq. 4.16) were also performed by the same procedure as explained in Section 4.1. The $\alpha n_{\rm B}$ value was evaluated to be 0.72 in average by Eq. 4.5, and hence, the D_O value for U^{VI}O₂(saloph)DMSO in DMSO

Figure 4.7. UV-visible absorption spectra measured at the applied potentials in the range from 0 to -1.650 V vs. Fc/Fc⁺ for U^{VI}O₂(saloph)DMSO (8.56×10^{-4} M) in DMSO containing TBAP (0.30 M). Wavelength range, a: 260–600, b: 460–600 nm. Asterisk indicates noise of Agilent 8453 diode-allay spectrophotometer. Optical path length: 2.90×10^{-2} cm.

Figure 4.8. Nernstian plot for the absorbancies at 344 nm in Figure 4.7.

was estimated as 2.1×10^{-6} cm²·s⁻¹ by Eq. 4.4. The ψ values are in the range from 0.70 ($\nu = 0.05 \text{ V} \cdot \text{s}^{-1}$, $\Delta E_p = 0.093 \text{ V}$) to 0.46 ($\nu = 0.15 \text{ V} \cdot \text{s}^{-1}$, $\Delta E_p = 0.108 \text{ V}$).^{190, 191)} As a result, the k° value of Eq. 4.16 is estimated as $2.9 \times 10^{-3} \text{ cm} \cdot \text{s}^{-1}$ by using Eq. 4.3.

To examine whether the DMSO dissociation from $[U^VO_2(saloph)DMSO]^-$ is also observed in the redox couple of $[U^VO_2(saloph)DMSO]^-/U^VO_2(saloph)DMSO$, the CV experiments of this couple in the mixed solvent systems of DMSO and dichloromethane (DMSO + DM) were carried out. The resulting cyclic voltammograms are shown in Figure 4.9. From the K_{dim} value of Eq. 2.9, the dimerization of $U^{VI}O_2(saloph)DMSO$ is negligible in all solutions. An uncoupled second oxidation peak (P_{as2}) was newly observed at *ca.* -1.1 V *vs.* Fc/Fc⁺, which is similar to E_{paf2} in Figures 4.1 and 4.3. The relative current values at E_{pas3} and E_{pas2} decrease and increase with a decrease in the concentration of the free DMSO, re-

Figure 4.9. Cyclic voltammograms of U^{VI}O₂(saloph)DMSO (a: 1.11×10^{-3} M, b: 1.09×10^{-3} M, c: 1.08×10^{-3} M, and d: 1.14×10^{-3} M) in DMSO + DM containing TBAP (0.10 M). DMSO concentration, a: 1.67 M, b: 0.818 M, c: 0.486 M, and d: 0.182 M.

spectively. Even in the multiple-scanned cyclic voltammograms for the same solutions in Figure 4.9, no peak other than P_{cs} , P_{as} , and P_{as2} appeared. Therefore, it is clarified that the electrochemical reduction of $U^{VI}O_2(saloph)DMSO$ can also be accompanied by the dissociation of the coordinated DMSO from $[U^VO_2(saloph)DMSO]^-$ as follows.

$$U^{VI}O_2(\text{saloph})\text{DMSO} + e^- \rightleftharpoons [U^{V}O_2(\text{saloph})\text{DMSO}]^- (E_{\text{pcs}}/E_{\text{pas}})$$
 (4.17)

$$[U^{v}O_{2}(saloph)DMSO]^{-} \rightleftharpoons [U^{v}O_{2}(saloph)]^{-} + DMSO$$
(4.18)

$$[U^{V}O_{2}(saloph)]^{-} \longrightarrow U^{VI}O_{2}(saloph) + e^{-} \quad (E_{pas2})$$

$$(4.19)$$

$$U^{VI}O_2(saloph) + DMSO \longrightarrow U^{VI}O_2(saloph)DMSO$$
 (4.20)

The dissociation constant (K_{disV}) of Eq. 4.18 was estimated by the peak current values in Figure 4.9 and Eq. 4.15, in which i_{paf1}/i_{pcf1} and [DMF] were replaced by i_{pas}/i_{pcs} and [DMSO], respectively. The resulting K_{disV} value was 0.5 M in average, which is smaller than that for $[U^VO_2(saloph)DMF]^-$ (5 M). Such a difference in K_{disV} means that the coordination ability of DMSO to $[U^VO_2(saloph)]^-$ is stronger than that of DMF. Consequently, the overall mechanisms including the electrochemical reaction, the dimerization, and the DMSO exchange

reaction of U^{VI}O₂(saloph)DMSO are same as those of U^{VI}O₂(saloph)DMF (Figure 4.5) in which DMF was displaced by DMSO. In a similar manner to $[U^VO_2(saloph)DMF]^-$, the first-order rate constant of the DMSO exchange reaction in $[U^VO_2(saloph)DMSO]^-$ can be estimated about 10⁵ s⁻¹, which is two-order lager than that in U^{VI}O₂(saloph)DMSO ($k_{ex} = 1.63 \times 10^3 \text{ s}^{-1}$ at 298 K).

In this section, $[U^VO_2(saloph)DMSO]^-$ was found to exist stably in DMSO. This is the first example of the stable uranyl(V) species in nonaqueous solvents.

4.3 U^{VI}O₂(dbm)₂DMSO in Dimethyl Sulfoxide

In Sections 4.1 and 4.2, it was found that the DMSO molecule can coordinate to uranium more strongly than DMF even in the uranyl(V) complexes and that the uranyl complexes with DMSO and multidentate ligand like as saloph have a possibility to form the stable uranyl(V) complex in DMSO solution. Therefore, for another candidate for the system of the stable uranyl(V) species, dibenzoylmethanate (dbm) and DMSO was selected as ligands to $U^VO_2^+$.

4.3.1 Experimental Details

84

Electrochemical Measurements. The CV measurements for $U^{VI}O_2(saloph)DMSO$ in DMSO were carried out in a similar manner to those for $U^{VI}O_2(saloph)DMF$. Dimethyl sulfoxide as the solvent was distilled under vacuum after the drying with CaH₂, and then stored over molecular sieves 4A (Wako).

UV-visible Spectroelectrochemical Measurements. The UV-visible spectroelectrochemical measurements were performed for $U^{VI}O_2(dbm)_2DMSO$. The effective optical path length of the OTTLE cell was spectrophotometrically calibrated as 2.80×10^{-2} cm. Other details were same as those described in Section 4.1.1

4.3.2 Results and Discussion

In order to investigate the redox behavior of $U^{VI}O_2(dbm)_2DMSO$ in DMSO, the CV measurements were carried out. The resulting cyclic voltammograms of $U^{VI}O_2(dbm)_2DMSO$ (1.04 × 10⁻³ M) in DMSO containing TBAP (0.10 M) are shown in Fig. 4.10. In this figure, reduction and oxidation peaks, P_{cd} and P_{ad}, were observed at around -1.40 (*E*_{pcd}) and

Figure 4.10. Cyclic voltammograms for $U^{VI}O_2(dbm)_2DMSO$ (1.04 × 10⁻³ M) in DMSO containing TBAP (0.10 M) in the potential range from -0.323 to -1.723 V. Initial scan direction: Cathodic.

$v/V \cdot s^{-1}$	$E_{\rm pcd}/V$	$E_{\rm pad}$ /V	$E_{\rm pcd/2}$ /V	$i_{\rm pcd}/\mu A$	$i_{\rm pc0}/\mu A$	$i_{\rm pa0}/\mu{\rm A}$	$i_{\rm sp0}/\mu {\rm A}$	$i_{\rm pad}/i_{\rm pcd}$						
0.05	-1.407	-1.317	-1.346	1.525	1.043	1.640	0.698	0.93						
0.10	-1.408	-1.317	-1.345	2.120	1.426	2.235	0.966	0.93						
0.15	-1.413	-1.308	-1.348	2.523	1.719	2.660	1.147	0.94						
0.20	-1.418	-1.307	-1.350	2.963	1.954	3.017	1.327	0.95						

Table 4.3. Electrochemical data of U^{VI}O₂(dbm)₂DMSO in DMSO

All potentials are versus Fc/Fc⁺.

 $-1.30 (E_{pad})$ V vs. Fc/Fc⁺, respectively. The i_{pad}/i_{pcd} values at the various scan rates v were calculated by Eq. 4.1. The electrochemical data of U^{VI}O₂(dbm)₂DMSO are summarized in Table 4.3. The ΔE_p values increased from 0.090 to 0.111 V with an increase in v. These results indicate that the electrochemical reaction of U^{VI}O₂(dbm)₂DMSO is a quasi-reversible system. The i_{pad}/i_{pcd} values close to unity suggest that the reduction product of U^{VI}O₂(dbm)₂-DMSO is almost completely reoxidized to U^{VI}O₂(dbm)₂DMSO without any successive reactions such as the DMSO dissociation (*cf.* Eqs. 4.7 and 4.18) observed in the systems of U^{VI}O₂(saloph)DMF and U^{VI}O₂(saloph)DMSO. This is supported by the fact that any other redox waves except for P_{cd} and P_{ad} were not observed even in the multiple scanned cyclic voltammograms of U^{VI}O₂(dbm)₂DMSO. Therefore, the electrochemical reaction of U^{VI}O₂(dbm)₂DMSO in DMSO observed in Figure 4.10 is considered to be,

$$U^{VI}O_2(dbm)_2DMSO + e^- \rightleftharpoons [U^VO_2(dbm)_2DMSO]^-.$$
 (4.21)

The formal potential $E^{\circ\prime}$ (= $(E_{pcd} + E_{pad})/2$) of the redox couple P_{cd}/P_{ad} was constant at -1.362 ± 0.002 V vs. Fc/Fc⁺.

To confirm the validity of Eq. 4.21 quantitatively, the UV-visible spectroelectrochemical measurements were performed for the DMSO solution containing $U^{VI}O_2(dbm)_2DMSO$ $(1.04 \times 10^{-3} \text{ M})$ and TBAP (0.30 M) by using the OTTLE cell (optical path length: 2.80 ×

Figure 4.11. UV-visible absorption spectra measured at the applied potentials in the range from 0 to -1.559 V vs. Fc/Fc⁺ for U^{VI}O₂(dbm)₂DMSO (1.04×10^{-3} M) in DMSO containing TBAP (0.30 M). Optical path length: 2.80×10^{-2} cm.

Figure 4.12. Nernstian plot for the absorbancies at 379 nm in Figure 4.11.

 10^{-2} cm). The potential applied on the OTTLE were changed stepwise in the range from 0 to -1.559 V vs. Fc/Fc⁺. The results are shown in Figure 4.11. The isosbestic points were clearly observed at 260, 348, 398, and 524 nm, indicating that only one equilibrium exists in this system. The applied potential values were plotted against the corresponding logarithmical concentration profiles according to the Nernstian Eq. 3.1 as shown in Figure 4.12. The slope and intercept of the least-square line for these plot were 0.028 ± 0.001 and -1.366 ± 0.004 . From these data, the electron stoichiometry *n* and the formal potential $E^{\circ\prime}$ were evaluated as 0.92 ± 0.03 and -1.366 ± 0.004 V vs. Fc/Fc⁺, respectively. The $E^{\circ\prime}$ value obtained in the UV-visible spectroelectrochemical measurements was comparable with that from the cyclic voltammograms. As a consequence, the validity of Eq. 4.21 was confirmed by the almost unity value of *n*. Thus, it was concluded that $[U^VO_2(dbm)_2DMSO]^-$ is purely produced as the stable uranyl(V) complex in DMSO. The absorption spectrum measured at -1.550 V vs. Fc/Fc⁺ in Figure 4.11 is assigned to pure $[U^VO_2(dbm)_2DMSO]^-$ in DMSO.

Since the electrochemical reaction of $U^{VI}O_2(dbm)_2DMSO$ is quasi-reversible, the diffusion coefficient (D_O) of $U^{VI}O_2(dbm)_2DMSO$ and the standard rate constant k° in Eq. 4.21 were evaluated in a similar manner to Sections 4.1 and 4.2. The αn_B value in Eq. 4.4 was calculated as 0.74 in average by using Eq. 4.5. Therefore, the D_O value of $U^{VI}O_2(dbm)_2$ -DMSO was estimated as 1.5×10^{-6} cm²·s⁻¹ by Eq. 4.4. According to Nicholson,^{190,191)} the ψ values corresponding to the various v were 0.77 (v = 0.05 V·s⁻¹) 0.75 (v = 0.10 V·s⁻¹), 0.50 (v = 0.15 V·s⁻¹), and 0.43 (v = 0.20 V·s⁻¹). Thus, the k° value was estimated as 2.7×10^{-3} cm·s⁻¹ in average by using Eq. 4.3.

The DMSO dissociation from $[U^VO_2(dbm)_2DMSO]^-$ was not examined by using the mixed solvent systems. However, it is reasonable to consider that the DMSO exchange reaction in $[U^VO_2(dbm)_2DMSO]^-$ should occurs in the solution through the dissociative mechanism because of the quite similar structure of $[U^VO_2(dbm)_2DMSO]^-$ to $U^{VI}O_2(dbm)_2$ -DMSO (see Chapter 5). If the same discussion as $[U^VO_2(saloph)DMF]^-$ and $[U^VO_2(saloph)-DMSO]^-$ is also applicable to the present system, the first-order rate constant of the DMSO exchange reaction in $[U^VO_2(dbm)_2DMSO]^-$ may be estimated *ca*. 10^4 s^{-1} . The difference between the estimated rate constants of the DMSO exchange reactions in $[U^VO_2(saloph)-DMSO]^-$ (10^5 s^{-1}) and $[U^VO_2(dbm)_2DMSO]^-$ (10^4 s^{-1}) might imply the difference between

the coordination strengths of DMSO to $[U^VO_2(saloph)]^-$ and $U^VO_2(dbm)_2$ fragments. In this section, it was clarified that $[U^VO_2(dbm)_2DMSO]^-$ stably exists in the DMSO solution. This is the second system of a stable uranyl(V) complex in nonaqueous system.

Chapter 5

Structural Changes of Uranyl Moiety with Reduction from U(VI) to U(V)

Molecular structure of the uranyl(V) complex is one of the most important issue in this thesis. Infrared (IR) spectroscopy is a good method to investigate the molecular structures of objective complexes. Furthermore, the spectroelectrochemical technique can also be combined with the IR spectroscopy. Unfortunately, it is difficult to apply the IR spectroscopy to the aqueous system, because of the strong absorption due to water in IR region. However, the structural properties of $[U^VO_2(CO_3)_3]^{5-}$, which is only one stable uranyl(V) species in the aqueous system, has been already analyzed in Section 3.2 (coordination number of CO_3^{2-}), and the previous Raman¹⁵¹⁾ and EXAFS¹⁵³⁾ studies (symmetric stretching frequency (v_1) and bond distances, respectively). Therefore, the IR spectroscopy for the redox couples of $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO$ and $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2-DMSO$ in DMSO solutions using the spectroelectrochemical method have been performed to examine the vibrational and structural properties of the present uranyl(V/VI) complexes. The results are discussed with the previous theoretical and experimental data of actinyl(V/VI) couples, not only uranyl(V/VI) ones.

5.1 Experimental Details

IR Spectroelectrochemical Measurements. The spectroelectrochemical technique was combined with IR spectroscopy. An IR spectroelectrochemical thin layer electrode cell (IRTLE cell) was produced as shown in Figure 5.1. The IR spectra were measured after achievement of equilibrium at each applied potential on the working electrode in the IRTLE cell, which requires 2 min. To improve a ratio of signal-to-noise in this technique, each IR spectrum was accumulated 500 times. Other conditions were same as those of the CV measurements, *e.g.* Section 4.1.

Figure 5.1. Schematic view of IRTLE cell. (a) Pt working electrod, (b) Ag/AgCl reference electrode with a liquid junction filled by 0.1 M TBAP/DMSO, (c) Pt counter electrode, (d) argon gas inlet, (e) NaCl window, (f) PTFE rubber packing, (g) glass cell, (h) PTFE frames, (i) PTFE screws, (j) He-Ne laser from SHIMADZU FTIR-8400S, and (k) sample solution.

5.2 **Results**

5.2.1 [U^VO₂(saloph)DMSO]⁻/U^{VI}O₂(saloph)DMSO in Dimethyl Sulfoxide

To confirm that the IR spectroelectrochemical thin layer electrode (IRTLE) cell functions properly, the IR spectrum of U^{VI}O₂(saloph)DMSO (8.0×10^{-3} M) in DMSO containing TBAP (0.10 M) was measured by using the standard liquid (SL) and IRTLE cells. The results are shown in Figure 5.2. These FTIR spectra by using SL and IRTLE cells required 40 and 500 times accumulation to obtain them with acceptable signal-to-noise (S/N) ratio, respectively. In the IR spectrum measured with the SL cell (black line, Figure 5.2), the characteristic peaks for azomethine stretching ($\nu_{C=N}$) and asymmetric stretching of uranyl moiety (ν_3) of U^{VI}O₂(saloph)DMSO are observed at 1605 and 895 cm⁻¹, respectively, being consistent with those of the solid state of U^{VI}O₂(saloph)DMSO in KBr (Section 2.3). These peaks are also observed in the IR spectrum measured with the IRTLE cell (red line, Figure 5.2). Therefore, it was confirmed that the IRTLE cell functions as well as the SL cell. Since the S/N ratio of the IR spectra with the IRTLE cell is somewhat poor, the ν_3 peak of U^{VI}O₂(saloph)DMSO at 895 cm⁻¹ is split by noise.

In order to examine the vibrational changes with the reduction of $U^{VI}O_2(saloph)DMSO$ to $[U^VO_2(saloph)DMSO]^-$, the IR spectra at various potentials were measured. The applied potential was changed stepwise from 0 to $-1.73 \text{ V} vs. \text{ Fc/Fc}^+$. The results are shown in Figure 5.3, where two regions of the IR spectra due to saloph $(1700-1420 \text{ cm}^{-1})$ and uranyl $(950-700 \text{ cm}^{-1})$ moieties are displayed in parts (a) and (b), separately. The clear isosbestic points are observed at 1577 and 1531 cm⁻¹ in Figure 5.3(a), indicating that only the redox equilibrium of $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO$ (Eq. 4.16) exists in this system. From the Nernstian equation (Eq. 3.1) and the potential data in Section 4.2, the IR spectrum measured at $-1.73 \text{ V} vs. \text{ Fc/Fc}^+$ was assigned to that of pure $[U^VO_2(saloph)DMSO]^-$. The reproducibility of the IR spectrum in the reverse reaction ($[U^VO_2(saloph)DMSO]^- \rightarrow U^{VI}O_2(saloph)DMSO + e^-$) was confirmed by application of the potential at $-1.33 \text{ V} vs. \text{ Fc/Fc}^+$, which is sufficient to oxidize $[U^VO_2(saloph)DMSO]^-$ to $U^{VI}O_2(saloph)DMSO$ completely. This is the first observation of the IR spectrum of pure uranyl(V) complex.

Figure 5.2. IR spectra of U^{VI}O₂(saloph)DMSO (8.0×10^{-3} M) in DMSO containing TBAP (0.10 M) measured with SL (black) and IRTLE (red) cells.

Figure 5.3. IR spectra of $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO (8.0 \times 10^{-3} \text{ M})$ in DMSO containing TBAP (0.10 M) at various applied potentials. Wavenumber range: (a) 1700–1420 cm⁻¹, (b) 950–700 cm⁻¹. Peak at 895 cm⁻¹ is split by noise.

In Figure 5.3(a), the IR peaks due to the coordinated saloph showed slight changes with the isosbestic points at 1577 and 1531 cm⁻¹. However, any significant changes in the IR spectra of the coordinated saloph were not observed in spite of the reduction from $U^{VI}O_2$ -(saloph)DMSO to $[U^VO_2(saloph)DMSO]^-$. This result indicates that the structure of the coordinated saloph in $[U^VO_2(saloph)DMSO]^-$ is similar to that in $U^{VI}O_2(saloph)DMSO$.

In Figure 5.3(b), with the reduction from U^{VI}O₂(saloph)DMSO to [U^VO₂(saloph)DMSO]⁻, the v_3 peak of U^{VI}O₂(saloph)DMSO at 895 cm⁻¹ disappeared and a new peak appeared at 770 cm⁻¹. Since the electron density on U⁵⁺ is larger than that on U⁶⁺, the electrostatic attraction between Uⁿ⁺ (n = 5, 6) and O²⁻ in U^VO₂⁺ should be smaller than that in U^{VI}O₂²⁺. Thus, it is considered that the U=O bond strength in U^VO₂⁺ is weaker than that in U^{VI}O₂²⁺. This leads to the shift of the v_3 peak to lower energy region with the reduction from U^{VI}O₂²⁺ to U^VO₂⁺. Hence, the peak at 770 cm⁻¹ in the IR spectrum of [U^VO₂(saloph)DMSO]⁻ can be assigned to the v_3 peak of this uranyl(V) complex. The difference (Δv_3) between the v_3 peaks of [U^VO₂(saloph)DMSO]⁻ and U^{VI}O₂(saloph)DMSO is 125 cm⁻¹.

5.2.2 [U^VO₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO in Dimethyl Sulfoxide

The IR spectroelectrochemical measurements for the redox couple of $[U^VO_2(dbm)_2-DMSO]^-/U^{VI}O_2(dbm)_2DMSO$ were performed to obtain the data concerning the vibrational properties of $[U^VO_2(dbm)_2DMSO]^-$ by using the same technique. The potential applied on the IRTLE was changed from 0 to -1.56 V vs. Fc/Fc⁺. The resulting spectra are shown in Figure 5.4. The peak heights are not reflecting the concentrations of $[U^VO_2(dbm)_2DMSO]^-$ and $U^{VI}O_2(dbm)_2DMSO$ directly, because the normalization of the spectral intensities has not been performed. Since the fraction of $[U^VO_2(dbm)_2DMSO]^-$ at -1.56 V vs. Fc/Fc⁺ was evaluated as 99.9% from Eq. 3.1 and $E^{\circ\prime}$ value of $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2-DMSO]^-/U^{VI}O_2(dbm)_2-DMSO (-1.366 \text{ V}$ vs. Fc/Fc⁺), the IR spectrum measured at the most negative potential in Figure 5.4 is attributable to that of pure $[U^VO_2(dbm)_2DMSO]^-$.

In Figure 5.4(a), the IR peaks due to the coordinated dbm show small shifts in the re-

gion from 0 to 12 cm^{-1} with the reduction of $U^{VI}O_2(dbm)_2DMSO$ to $[U^VO_2(dbm)_2DMSO]^-$, indicating that the structural changes of the coordinated dbm itself are small. This is the same phenomenon as that observed in the $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO$ redox system.

In Figure 5.4(b), the disappearance of the v_3 peak of $U^{VI}O_2(dbm)_2DMSO$ at 906 cm⁻¹ and the appearance of a new peak at 775 cm⁻¹ were observed with the reduction from $U^{VI}O_2(dbm)_2DMSO$ to $[U^{V}O_2(dbm)_2DMSO]^-$. From the same consideration as the case of $[U^{V}O_2(saloph)DMSO]^-$, the new peak at 775 cm⁻¹ can be assigned to the v_3 peak of $[U^{V}O_2(dbm)_2DMSO]^-$. The Δv_3 value between $[U^{V}O_2(dbm)_2DMSO]^-$ and $U^{VI}O_2(dbm)_2DMSO]^-$ is 131 cm⁻¹, which is the quite similar value to that of the $[U^{V}O_2(saloph)DMSO]^-/U^{VI}O_2$ -(saloph)DMSO system. This red shift of the v_3 peak also means the weakening of the U=O bond strength with the reduction from $U^{VI}O_2(dbm)_2DMSO$ to $[U^{V}O_2(dbm)_2DMSO]^-$.

Figure 5.4. IR spectra of $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO(6.0 \times 10^{-3} \text{ M})$ in DMSO containing TBAP (0.10 M) at various applied potentials. Wavenumber range: (a) 1650–1420 cm⁻¹, (b) 950–730 cm⁻¹. Peaks at 1538 and 1522 cm⁻¹ are split by noise.

5.3 Discussion

Because of no significant spectral changes in Figures 5.3(a) and 5.4(a), it was found that the structures of the ligands themselves (saloph and dbm) coordinated in the equatorial plane of the uranyl moieties are not largely influenced by the changes in the oxidation states of the center uranium. On the other hand, in Figures 5.3(b) and 5.4(b), it was clarified that the v_3 peaks due to the axial uranyl moiety show the remarkable red shifts about 130 cm⁻¹ with the reduction from U^{VI}O₂²⁺ to U^VO₂⁺. The similar phenomenon was also confirmed in the system of $[U^VO_2(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$. Madic *et al.* studied the Raman spectra of this aqueous system, and reported the red shift of the symmetric stretching (v_1) peak of the uranyl moiety with the reduction from $[U^{VI}O_2(CO_3)_3]^{4-}$ (812 cm⁻¹) to $[U^VO_2(CO_3)_3]^{5-}$ (759 cm⁻¹).¹⁵¹ Therefore, it is concluded that the weakening of the uranyl(V/VI) redox systems.

According to Jones,⁸⁾ the force constant of the U=O bond in the uranyl moiety (F_{UO}) can be related to its bond distance (R_{UO}) by Badger's rule⁹⁾ as follows.

$$R_{\rm UO} = \beta \cdot F_{\rm UO}^{-\frac{1}{3}} + d_{\rm UO} \tag{5.1}$$

where β and d_{UO} are constants defined by Badger.⁹⁾ In the definition,⁸⁾ the value of β is about 1.08 for all pairs of elements if one element has atomic number greater than 18, *i.e.*, ₉₂U. The F_{UO} values of the U=O bonds of [U^VO₂(saloph)DMSO]⁻, U^{VI}O₂(saloph)DMSO, [U^VO₂(dbm)₂DMSO]⁻, and U^{VI}O₂(dbm)₂DMSO were roughly estimated as 5.31, 7.17, 5.31, 7.25 mdyne·Å⁻¹, respectively, by Eq. 5.2.

$$v_3 = (2\pi c)^{-1} \sqrt{\frac{F_{\rm UO}(m_{\rm U} + m_{\rm O})}{(m_{\rm U}m_{\rm O})}}$$
(5.2)

where c, m_U , and m_O are light velocity $(3.00 \times 10^{10} \text{ cm} \cdot \text{s}^{-1})$, mass of U $(238/N_A; N_A: \text{Avogadro number}, 6.02 \times 10^{23})$ and, mass of O $(16/N_A)$. The d_{UO} values for U^{VI}O₂(saloph)DMSO and U^{VI}O₂(dbm)₂DMSO were calculated as 1.22 and 1.23 Å, respectively, by using Eq. 5.1 together with the average R_{UO} values in these uranyl(VI) complexes (1.783 Å and 1.784 Å, respectively) from the single crystal X-ray analyses (see Sections 2.3 and 2.4) and their F_{UO} values. As a result of Eq. 5.1 with F_{UO} of the uranyl(V) complexes and d_{UO} of the corresponding uranyl(VI) ones, both R_{UO} values of $[U^VO_2(\text{saloph})\text{DMSO}]^-$ and $[U^VO_2(\text{dbm})_2-\text{DMSO}]^-$ were estimated as 1.84 Å. The difference between R_{UO} (ΔR_{UO}) of the uranyl(V) and uranyl(VI) complexes were 0.06 Å for both $[U^VO_2(\text{saloph})\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}$ and $[U^VO_2(\text{dbm})_2\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}]^-/U^{VI}O_2(\text{saloph})\text{DMSO}$.

The results obtained for the present uranyl(V/VI) complexes can be compared with the experimental and theoretical data concerning the stretching frequencies in the actinyl(V/VI) moieties and U=O bond distances in other systems, which are summarized in Table 5.1. In this table, the values of Δv_3 for $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO$ and $[U^VO_2^-(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO$ are comparable with the experimental results for Np^VO₂⁺/Np^{VI}O₂²⁺ (145 ± 5 cm⁻¹) and Am^VO₂⁺/Am^{VI}O₂²⁺ (107 ± 3 cm⁻¹) by Jones and Penneman¹⁵⁵⁾ and the theoretical prediction for U^VO_2(H₂O)₅⁺/U^{VI}O_2(H₂O)₅²⁺ (92 cm⁻¹) by Hay *et al.*¹⁰⁸⁾ Such a consistency of Δv_3 indicates the validity of the assignments for the peaks at 770 cm⁻¹ in Figure 5.3(b) and 775 cm⁻¹ in Figure 5.4(b) to the v_3 ones of $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$, respectively.

Tabl	e 5.1. Vibration	al and structura	l properties of AnO_2^{n+} (n = 1 or 2) speci	es	
An(V), (VI)	$\nu_3 \ / \mathrm{cm}^{-1}$	$\Delta \nu_3 /\mathrm{cm}^{-1}$ a	$F_{ m AnO}$ /mdyne $\cdot m \AA^{-1}$ b	$R_{ m UO}/{ m \AA}$	$\Delta R_{ m UO}/{ m \AA}^c$	Reference
[U ^V O ₂ (saloph)DMSO] ⁻	770	125	5.31^{d}	1.84	0.06	This work
$U^{M}O_{2}(saloph)DMSO$	895		7.17^d	1.783^{e}		This work
$[U^{V}O_{2}(dbm)_{2}DMSO]^{-}$	775	131	5.31^d	1.84	0.06	This work
$U^{VI}O_2(dbm)_2DMSO$	906		7.25^d	1.784^{e}		This work
$\mathrm{Np^VO_2^+}$ f	824 ± 4	145 ± 5	5.65 ± 0.06	Ι	Ι	[155]
$Np^{M}O_{2}^{2+}f$	969 ± 1		7.81 ± 0.02	I		[155]
$\operatorname{Am}^{\operatorname{VO}_2^+ f}$	832 ± 2	107 ± 3	5.77 ± 0.03	I	I	[155]
${ m Am^{VI}O_2^{2+}}$ f	939 ± 1		7.35 ± 0.02	I		[155]
$\mathrm{U}^{\mathrm{V}}\mathrm{O}_{2}(\mathrm{H}_{2}\mathrm{O})_{5}^{+\ g}$	606	92	I	1.810	0.054	[108]
$\mathrm{U}^{\mathrm{VI}}\mathrm{O}_2(\mathrm{H}_2\mathrm{O})_5^{2+\ g}$	1001		I	1.756		[108]
$[U^{V}O_{2}(CO_{3})_{3}]^{5-h}$	759 (<i>v</i> 1)	53 (Δv_1)	I	I	I	[151]
$[U^{VI}O_2(CO_3)_3]^{4-h}$	812 (<i>v</i> ₁)		I	I		[151]
$[U^{V}O_{2}(CO_{3})_{3}]^{5-i}$	I	I	I	1.90 ± 0.02	0.10 ± 0.04	[153]
$[U^{VI}O_2(CO_3)_3]^{4-i}$	I		I	1.80 ± 0.02		[153]
$[U^{V}O_{2}(CO_{3})_{3}]^{5-j}$	I	I	I	1.929	0.083	[110]
$[U^{VI}O_2(CO_3)_3]^{4-j}$	I		I	1.845		[110]
$[U^{V}O_{2}(OPPh_{3})_{4}](CF_{3}SO_{3})^{k}$	I	I	I	1.821	0.059	[194]
$[U^{VI}O_{2}(OPPh_{3})_{4}](CF_{3}SO_{3})_{2}^{k}$	I		I	1.762		[194]
^{<i>a</i>} Difference between the ν_3 peak	lks of $An^{W}O_{2}^{2+}$;	and An ^V O ⁺ ₂ . ^b F	orce constants of An=	D bond. ^c Diffe	rence between	$R_{\rm UO}$ of ${\rm U}^{\rm V}{\rm O}_2^+$
and $U^{M}O_{2}^{2+}$. ^{<i>d</i>} Roughly estime	ated by the equ	ation: $v_3 = (2\pi \alpha)$	$(z)^{-1}\sqrt{F_{\rm UO}(m_{\rm U}+m_{\rm O})/(z)}$	$\overline{m_{\rm U}m_{\rm O}}$ (c, light v	/elocity; <i>m</i> _U , m	ass of U; m_0 ,
mass of U). Average of the K_1	UO Values in the	Single crystal X	-ray analysis in Sectio	ns 2.3 and 2.4.	Experimental	data by Jones
and Penneman ^{1,2,5,6} Theoretica al. ¹⁵³⁾ <i>j</i> Theoretical data by Ga	al data by Hay e Igliardi <i>et al.</i> ¹¹⁰⁾	<i>et al.</i> ¹⁰⁹⁾ " Experimenta k	erimental data by Mad I data by Berthet <i>et al.</i>	IC <i>et al.</i> ^{121, 1} Ex.	perimental data	by Docrat <i>et</i>

5.3. Discussion

In the theoretical calculations, the $R_{\rm UO}$ values of the uranyl(V) species were simulated as 1.810 Å for in U^VO₂(H₂O)⁺ by Hay *et al.*¹⁰⁸⁾ and 1.929 Å for [U^VO₂(CO₃)₃]⁵⁻ by Gagliardi *et al.*,¹¹⁰⁾ which are 0.054 and 0.083 Å longer than those in the corresponding uranyl(VI) species, respectively. Furthermore, only two data are available as experimental references for uranyl(V) species, one is the EXAFS study for [U^VO₂(CO₃)₃]⁵⁻ by Docrat *et al.*¹⁵³⁾ ($R_{\rm UO} = 1.90 \pm 0.02$ Å) and the other is the X-ray crystallographic study for the uranyl(V) complex with triphenylphosphine oxide (OPPh₃), U^VO₂(OPPh₃)₄(CF₃SO₃), by Berthet *et al.*¹⁹⁴⁾ ($R_{\rm UO} = 1.821$ Å).¹ In the comparison with these data, the values of $R_{\rm UO}$ of [U^VO₂-(saloph)DMSO]⁻ and [U^VO₂(dbm)₂DMSO]⁻ and $\Delta R_{\rm UO}$ of [U^VO₂(saloph)DMSO]⁻/U^{VI}O₂-(saloph)DMSO] and [U^VO₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO] and [U^VO₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO] and [U^VO₂(dbm)₂DMSO] and [U^VO₂(db

¹According to Berthet and co-workers,¹⁹⁴⁾ a few orange-colored crystals of $U^VO_2(OPPh_3)_4(CF_3SO_3)$ were serendipitously obtained from acetonitrile solution containing $U^{VI}O_2(CF_3SO_3)_2$ and $OPPh_3$ (1:4 molar ratio) under inert N₂ atmosphere. Thus, the acetonitrile solution containing $U^VO_2(OPPh_3)_4^+$ could be expected as the alternative system of the stable uranyl(V) complex. However, no data of $U^VO_2(OPPh_3)_4(CF_3SO_3)$ except for its molecular structure are reported. In this study, I have attempted the cyclic voltammetric measurement for $U^{VI}O_2(OPPh_3)_4^{2+}$ in acetonitrile. As a result, irreversible cyclic voltammograms of the acetonitrile solution containing $U^{VI}O_2(OPPh_3)_4^{2+}$ were recorded. This means that $U^VO_2(OPPh_3)_4^+$ is not stable in this system.

Chapter 6

Electronic Spectra of Uranyl(V) Complexes

Uranyl(V) has one unpaired electron in its 5f orbital, which is the simplest electronic configuration in the actinyl species. Thus, electronic structure of the uranyl(V) complex is the most essential issue to explore the coordination chemistry of not only uranyl, but also all actinyl ions. In spite of many attempts, there are no reports concerning the observation of the uranyl(V) complexes with identified structure as described in Chapter 1. As the exception, $[U^VO_2(CO_3)_3]^{5-}$ is traditionally known as the stable uranyl(V) complex in solution. However, even its spectroscopic properties is still uncertain.

In the previous chapters, it was found that two kinds of the uranyl(V) complexes are also stable in the nonaqueous systems and that they exist as $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$. Here, the electronic spectra of three types of the pure uranyl(V) complexes, $[U^VO_2(CO_3)_3]^{5-}$, $[U^VO_2(saloph)DMSO]^-$, and $[U^VO_2(dbm)_2DMSO]^-$, have been measured and discussed their spectroscopic properties in a comparison each other.

6.1 Experimental Details

Visible-NIR Absorption Spectrum of $[\mathbf{U}^{V}\mathbf{O}_{2}(\mathbf{CO}_{3})_{3}]^{5-}$ **in** $\mathbf{D}_{2}\mathbf{O}$. The preparation of $\mathbf{D}_{2}\mathbf{O}$ solution containing $[\mathbf{U}^{V}\mathbf{O}_{2}(\mathbf{CO}_{3})_{3}]^{5-}$ was performed according to the procedure described in Section 3.2.1. The resulting solution of $[\mathbf{U}^{V}\mathbf{O}_{2}(\mathbf{CO}_{3})_{3}]^{5-}$ was transfered immediately to a conventional quartz cell (optical path length: 1 cm) filled by argon gas preliminarily, and sealed with a cap tightly. The visible-NIR absorption spectrum of $[\mathbf{U}^{V}\mathbf{O}_{2}(\mathbf{CO}_{3})_{3}]^{5-}$ in $\mathbf{D}_{2}\mathbf{O}$ was measured by using SHIMADZU UV-3150 spectrophotometer.

Visible-NIR Spectroelectrochemical Measurements. Visible-NIR spectroelectrochemical measurements were performed for the redox couples of $[U^VO_2(saloph)DMSO]^-/U^{VI}O_2(saloph)DMSO]^-/U^{VI}O_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO]$ in a similar manner to those for the UV-visible spectroelectrochemical ones in Sections 4.2.1 and 4.3.1, respectively. To keep the potential on the working electrode stably during the measurements of the absorption spectra, the Ag/AgCl aqueous reference electrode (BAS 002020 RE-1B) with a glass-flit liquid junction filled by 0.3 M TBAP/DMSO was used instead of Ag/Ag⁺. In the visible-NIR spectroelectrochemical measurements, the absorption spectra were recorded by SHIMADZU UV-3150 spectrophotometer. The effective optical path length of the OTTLE cell was spectrophotometrically calibrated as 1.89×10^{-2} cm.

6.2 Results

6.2.1 $[\mathbf{U}^{\mathsf{V}}\mathbf{O}_2(\mathbf{CO}_3)_3]^{5-}$ in $\mathbf{D}_2\mathbf{O}$

Uranyl(V) carbonate, $[U^VO_2(CO_3)_3]^{5-}$, is traditionally known as a stable uranyl(V) species in basic aqueous system containing CO_3^{2-} . Previously, Cohen has reported its characteristic absorption bands at 765, 990, and 1120 nm in the visible-NIR absorption spectrum.¹⁴⁷⁾ However, there are no informations in the wavelength region longer than 1350 nm, because the large interferences of the absorption due to H₂O as solvent. To solve this problem, the use of D_2O as solvent instead of H_2O is effective. In Section 3.2, the D_2O solution containing $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ and Na₂CO₃ has already been obtained by the bulk electrolysis of $[U^{VI}O_{2} (CO_3)_3$ ⁴⁻. Therefore, by using the same technique, $[U^VO_2(CO_3)_3]^{5-}$ (5.5×10⁻² M) was also prepared in D₂O containing Na₂CO₃ (1 M) here. The electronic spectrum of the resulting solution was measured in the range from 260 to 1870 nm with a conventional quartz cell (optical path length: 1 cm). The result is drawn with a solid line in Figure 6.1. To confirm the completeness of the electrolysis from $[U^{VI}O_2(CO_3)_3]^{4-}$ to $[U^VO_2(CO_3)_3]^{5-}$, the spectrum of the initial solution of $[U^{VI}O_2(CO_3)_3]^{4-}$ is also depicted by a dotted line in Figure 6.1. In the resulting spectrum for the D₂O solution containing $[U^VO_2(CO_3)_3]^{5-}$ (5.5 × 10⁻² M) and Na₂CO₃ (1.0 M), the spectrum of HDO was also involved. The HDO was given by the contamination of atmospheric H₂O into the D₂O solution during the bulk electrolysis from $[U^{VI}O_2(CO_3)_3]^{4-}$ to $[U^{V}O_2(CO_3)_3]^{5-}$. Therefore, the spectrum of HDO was subtracted from the observed spectrum. The broken arrows in Figure 6.1 indicate the residuals of the absorption due to HDO.

In the UV-visible region, the disappearance of the LMCT absorption bands of $[U^{VI}O_2-(CO_3)_3]^{4-}$ at *ca*. 450 nm with its reduction to $[U^VO_2(CO_3)_3]^{5-}$, which was observed in Figure 3.2, was reproduced, *i.e.*, such absorption bands on the dotted line $([U^{VI}O_2(CO_3)_3]^{4-})$

Figure 6.1. Electronic spectra of $[U^VO_2(CO_3)_3]^{5-}$ (5.5×10⁻² M, solid line) and $[U^{VI}O_2(CO_3)_3]^{4-}$ (5.5×10⁻² M, dotted line) in D₂O containing Na₂CO₃ (1.0 M). Broken arrows indicate residuals after subtraction of the spectrum due to HDO from the resulting spectrum (Details are in text). Optical path length: 1 cm.

are not observed on the solid line ($[U^VO_2(CO_3)_3]^{5-}$). This means that $[U^{VI}O_2(CO_3)_3]^{4-}$ in the starting solution was completely reduced to $[U^VO_2(CO_3)_3]^{5-}$. For the sample solution of $[U^VO_2(CO_3)_3]^{5-}$ in the tightly sealed quartz cell, any spectral changes from the solid line in Figure 6.1 were not observed over the course of several months.

In the visible-NIR region, the characteristic absorption bands of $[U^VO_2(CO_3)_3]^{5-}$ were observed at around 760, 990, 1140, 1600, and 1800 nm. The absorption bands at 760, 990, and 1140 nm are consistent with the results of Cohen.¹⁴⁷⁾ On the other hand, the absorption peaks at 1600 and 1800 nm, which are in the strong absorption region of H₂O, are the first observation for $[U^VO_2(CO_3)_3]^{5-}$. The molar absorptivities (ϵ) of these absorption bands are in the range from 0.2 to 3.6 M⁻¹·cm⁻¹.

6.2.2 [U^VO₂(saloph)DMSO]⁻ in Dimethyl Sulfoxide

In Section 4.2, [U^VO₂(saloph)DMSO]⁻ can exist stably in DMSO solution. To obtain details concerning the spectroscopic properties of [U^VO₂(saloph)DMSO]⁻ in visible-NIR region, the visible-NIR absorption spectra for the redox couple of $[U^VO_2(saloph)-$ DMSO]⁻/U^{VI}O₂(saloph)DMSO in DMSO were measured at various applied potentials by using the same method as the UV-visible spectroelectrochemical technique. In this measurement, the effective optical path length was spectrophotometrically evaluated as $1.89 \times$ 10^{-2} cm. The resulting spectra for the [U^VO₂(saloph)DMSO]⁻/U^{VI}O₂(saloph)DMSO (total concentration: 5.28×10^{-3} M) redox couple in DMSO containing TBAP (0.30 M) are shown in Figure 6.2. The applied potential on the OTTLE was varied stepwise from 0 to -1.814 V vs. Fc/Fc⁺. The absorption bands were observed at around 650, 750, 900, 1400, and 1875 nm with a decrease in the potential, and then the spectral changes converged at -1.814 V vs. Fc/Fc⁺, which is consistent with the result observed in Figure 4.7. Therefore, it is concluded that the spectrum at -1.814 V vs. Fc/Fc⁺ is attributed to that of [U^VO₂-(saloph)DMSO]⁻ in DMSO and that the absorption bands in Figure 6.2 are intrinsic ones of $[U^VO_2(saloph)DMSO]^-$. The ϵ values of these absorption bands are in the range from 100 to 300 M⁻¹·cm⁻¹.

6.2.3 $[U^VO_2(dbm)_2DMSO]^-$ in Dimethyl Sulfoxide

As the alternative system of the stable uranyl(V) complex in nonaqueous solvent, $[U^VO_2-(dbm)_2DMSO]^-$ in DMSO was found in Section 4.3. To examine whether the characteristic absorption bands of $[U^VO_2(saloph)DMSO]^-$ in the visible-NIR region are a common property of the uranyl(V) complexes, the visible-NIR absorption spectra for the redox couple of $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO$ (4.11 × 10⁻³ M) in DMSO containing TBAP (0.30 M) were also measured at various applied potentials from 0 to -1.664 V vs. Fc/Fc⁺. The resulting spectra are shown in Figure 6.3. The absorbancies at around 640, 740, 860, 1470, and 1890 nm increased with the reduction of $U^{VI}O_2(dbm)_2DMSO$ to $[U^VO_2(dbm)_2-DMSO]^-$, and such spectral changes converged at -1.564 V vs. Fc/Fc⁺. The potential value of the convergence is consistent with the result in Figure 4.11, Section 4.3. Thus, the absorption spectrum measured at -1.564 V vs. Fc/Fc⁺ is assigned to $[U^VO_2(dbm)_2DMSO]^-$. It is clear that the absorption bands in Figure 6.3 are the characteristic ones of $[U^VO_2(dbm)_2-DMSO]^-$. The ϵ values of these absorption bands are in the range from 150 to 900 M⁻¹·cm⁻¹.

Figure 6.2. Visible-NIR absorption spectra measured at the applied potentials in the range from 0 to -1.814 V vs. Fc/Fc⁺ for [U^VO₂(saloph)DMSO]⁻/U^{VI}O₂(saloph)DMSO (5.28 × 10⁻³ M) in DMSO solution containing TBAP (0.30 M). Noises are due to detectors (photomultiplier and PbS detector) in the spectrophtometer and/or absorption of DMSO in the OTTLE cell. Optical path length: 1.89×10^{-2} cm.

Figure 6.3. Visible-NIR absorption spectra measured at the applied potentials in the range from 0 to -1.664 V vs. Fc/Fc⁺ for $[U^VO_2(dbm)_2DMSO]^-/U^{VI}O_2(dbm)_2DMSO$ (4.11 × 10⁻³ M) in DMSO solution containing TBAP (0.30 M). Noises are due to detectors (photomultiplier and PbS detector) in the spectrophtometer and/or absorption of DMSO in the OTTLE cell. Optical path length: 1.89×10^{-2} cm.

6.3 Discussion

In a comparison between Figures 6.1, 6.2, and 6.3, the electronic spectra of $[U^VO_2-(CO_3)_3]^{5-}$, $[U^VO_2(saloph)DMSO]^-$, and $[U^VO_2(dbm)_2DMSO]^-$ resemble each other despite the difference in the ligands coordinated to the equatorial plane of the uranyl(V) moiety, especially the middle and latter are quite similar. Such a similarity implies that the spectral changes in Figures 6.1, 6.2, and 6.3 do not correspond to the reduction of the ligands (CO_3^{2-} , saloph, dbm, and DMSO) but do the uranyl core ($U^{VI}O_2^{2+} + e^- \rightarrow U^VO_2^+$) and strongly suggests that the characteristic absorption bands of these uranyl(V) complexes in the visible-NIR region are primarily due to the electronic transtions in the $U^VO_2^+$ core.

To examine the spectral features of the uranyl(V) complexes in the visible-NIR region from the viewpoint of energy, the electronic spectra of $[U^VO_2(CO_3)_3]^{5-}$, $[U^VO_2(saloph)-DMSO]^-$, and $[U^VO_2(dbm)_2DMSO]^-$ were replotted in wavenumbers (cm⁻¹), as shown in parts (a)–(c) of Figure 6.4, respectively. The peak positions of the characteristic absorption bands of these uranyl(V) complexes are listed in Table 6.1 in cm⁻¹ (the corresponding wavelength are in parentheses).

Interestingly, the ϵ values of the characteristic absorption bands of $[U^VO_2(CO_3)_3]^{5-}$ are in the range from 0.2 to 3.6 M⁻¹·cm⁻¹, while those of $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$ are from 10² close to 10³ M⁻¹·cm⁻¹. The small ϵ values of $[U^VO_2(CO_3)_3]^{5-}$ indicate that the characteristic absorption bands of the uranyl(V) complexes in visible-NIR region are due to the essentially forbidden electronic transitions in the U^VO₂⁺ core. As can be seen from Figure 6.4 and the molecular structures of these uranyl(V) complexes (see Chapter 5), it is likely that the differences in the ϵ values and the spectral shapes of these uranyl(V) complexes depend on the arrangement of the atoms directly bonded to the center uranium.

It is well accepted that the most important electronic transition scheme is the electricdipole one. Other transition schemes such as magnetic-dipole, electric-quadrupole and so on

	0,			J 1		0							
U ^V O ₂ ⁺ complexes		Tran	sition energy /	cm^{-1} (nm)			Reference						
$[U^{V}O_{2}(CO_{3})_{3}]^{5-}$	-	5560	6250	8770	10100	13200	This work						
		(1800)	(1600)	(1140)	(990)	(760)							
[U ^V O ₂ (saloph)DMSO] ⁻	_	5330	7140	11100	13300	15400	This work						
		(1875)	(1400)	(900)	(750)	(650)							
[U ^V O ₂ (dbm) ₂ DMSO] ⁻	_	5290	6800	11600	13500	15600	This work						
		(1890)	(1470)	(860)	(740)	(640)							
Np ^{VI} O ₂ ²⁺ species	Transition energy / cm ⁻¹ (Term symbol in $D_{\infty h}$)												
$Np^{VI}O_2^{2+}(aq)$	ca. 2000	6752	8168	18180	21100	ca. 24000	[89]						
$({}^2\Phi_{\frac{5}{2}u})^a$	$(^{2}\Delta_{\frac{3}{2}u})$	$({}^{2}\Phi_{rac{7}{2}u})$	$(^{2}\Delta_{\frac{5}{2}u})$	$(^{2}\Pi_{\frac{1}{2}u})$	$(^2\Pi_{\frac{3}{2}u})$	$(^{2}\Sigma_{u}^{+})$							
[Np ^{VI} O ₂ Cl ₄] ²⁻	ca. 1000	6880.4	7990	17241.4	20080.8	_	[101]						
$({}^{2}\Delta_{\frac{3}{2}u}+{}^{2}\Phi_{\frac{5}{2}u})^{a}$	$(^{2}\Delta_{\frac{3}{2}u}+{}^{2}\Phi_{\frac{5}{2}u})$	$(^{2}\Delta_{\frac{5}{2}u})$	$(^2\Phi_{\frac{7}{2}u})$	$(^2\Pi_{\frac{1}{2}u})$	$(^2\Pi_{\frac{3}{2}u})$								
[Np ^{VI} O ₂ (NO ₃) ₃] ⁻	_	6459.0	9420.2	17843.6	20816.3	-	[101]						
$({}^2\Phi_{\frac{5}{2}u})^a$		$(^{2}\Delta_{\frac{5}{2}u})$	$(^2\Phi_{rac{7}{2}u})$	$(^{2}\Pi_{\frac{1}{2}u})$	$(^2\Pi_{\frac{3}{2}u})$								
bare Np ^{VI} O ₂ ²⁺	447	5515	6565	25844	28909	_	[107]						
$({}^{2}\Phi_{\frac{5}{2}u} + {}^{2}\Delta_{\frac{5}{2}u})^{a}$	$(^{2}\Delta_{rac{3}{2}u})$	$(^{2}\Delta_{\frac{5}{2}u}+{}^{2}\Phi_{\frac{5}{2}u})$	$(^2\Phi_{\frac{7}{2}u})$	$(^{2}\Pi_{\frac{1}{2}u})$	$(^{2}\Pi_{\frac{3}{2}u})$								

Table 6.1. Transition energy values of f-f transitions in actinyl species with 5f¹ configuration

^aGround state.

Figure 6.4. Electronic spectra of uranyl(V) complexes in visible-NIR region: (a) $[U^VO_2(CO_3)_3]^{5-}(5.5\times10^{-2} \text{ M})$ in D₂O containing Na₂CO₃ (1.0 M); (b) $[U^VO_2(\text{saloph})\text{DMSO}]^-$ (5.28 × 10⁻³ M) in DMSO containing TBAP (0.30 M); (c) $[U^VO_2(\text{dbm})_2\text{DMSO}]^-$ (4.11 × 10⁻³ M) in DMSO containing TBAP (0.30 M). Noises in parts (b) and (c) are due to detectors (photomultiplier and PbS detector) in the spectrophotometer and/or absorption of DMSO in the OTTLE cell. Optical path length: 1 cm for part (a) and 1.89×10^{-2} cm for parts (b) and (c).

can also be considered. However, it is generally known that the magnitudes of these transition schemes are much smaller than the electric-dipole one. Hence, the discussion performed here was limited mainly in the electric-dipole transition. A bare $U^{V}O_{2}^{+}$ ion has a linear geometry, *i.e.*, $O=U=O(D_{\infty h})$. Thus, there is an inversion center in the $U^{\tilde{V}}O_2^+$ ion. In this case, electronic transitions between energy states with the same parities $(g \rightarrow g, u \rightarrow u)$ in the $U^{V}O_{2}^{+}$ ion are forbidden.¹⁹⁵⁾ This selection rule is so-called "Laporte forbidden". Even for the uranyl(V) complexes with equatorial ligands, such a selection rule holds in a centrosymmetric system. Assuming that a coordination environment experienced by the center uranium is approximated by the arrangement of the atoms bonded to the center uranium directly, that in $[U^VO_2(CO_3)_3]^{5-}$ can be regarded as being in a pseudocentrosymmetric hexagonal bipyramidal field (D_{6h}) , while those in $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$ are in noncentrosymmetric pentagonal bipyramidal ones (D_{5h}) . Thus, it is predicted that the essentially forbidden electronic transitions in the $U^VO_2^+$ core of $[U^VO_2(saloph)DMSO]^-$ and [U^VO₂(dbm)₂DMSO]⁻ are partially allowed by the disappearance of the inversion center and that the absorption bands due to such transitions in $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2 (dbm)_2 DMSO]^{-1}$ are observed more strongly than those of $[U^VO_2(CO_3)_3]^{5-1}$. This interpretation well explains the differences in the ϵ values in Figure 6.4. A similar effect of the lack of centrosymmetricity on the intensities of electronic transitions between states with same parities is also predicted by the theoretical calculations for neptunyl(V) $(Np^{V}O_{2}^{+}, 5f^{2})$ complexes with chloride ligands.¹⁰⁹⁾

For the transition scheme between the electronic states with same parities in the $U^{V}O_{2}^{+}$ core, there are two candidates; one is the charge transfer from the axial oxygen to the center uranium (LMCT, e.g., $\sigma_u^2(\delta_u \operatorname{or} \phi_u) \to \sigma_u(\delta_u \operatorname{and/or} \sigma_u \phi_u)^2$), and another is a f-f transition $(u \rightarrow u, u)$: ungerade) in the 5f¹ electronic configuration of U⁵⁺. Normally, the uranyl(VI) species (5f⁰) show the LMCT absorption bands at around 22000 cm⁻¹ (e.g., the dotted line in Figure 6.1 for $[U^{VI}O_2(CO_3)_3]^{4-}$). With the reduction to $[U^VO_2(CO_3)_3]^{5-}$, the disappearance of such LMCT bands of $[U^{VI}O_2(CO_3)_3]^{4-}$ was observed (Section 2.1). Because of the lower positive charge on U^{5+} than U^{6+} , it is expected that the LMCT transition in the $U^{V}O_{2}^{+}$ core requires a higher energy (> 22000 cm⁻¹) than that in U^{VI}O₂²⁺; *i.e.*, a blue shift of the LMCT bands should be observed with the reduction from uranyl(VI) to uranyl(V). Unfortunately, the LMCT bands of $[U^VO_2(CO_3)_3]^{5-}$ could not be detected in Figure 6.1. However, such a blue shift with the reduction from uranyl(VI) species to uranyl(V) one has been observed in the CsCl–NaCl melt by Khokhryakov (uranyl(VI): 25000, 31250, and 33300 cm⁻¹ \rightarrow uranyl(V): 27770, 31764, and 33300 cm⁻¹).¹⁴⁵⁾ Furthermore, according to the quantum chemical calculations for analogous actinyl(V/VI) couple, bare $Np^VO_2^+/Np^{VI}O_2^{2+}$, by Matsika and Pitzer,¹⁰⁷⁾ it was predicted that the LMCT bands in NpVO₂⁺ appear at a much higher energy region (the lowest transition: 23079 cm⁻¹) than those in Np^{VI}O₂²⁺ (the lowest one: 12622 cm⁻¹). Consequently, the characteristic absorption bands of $[U^{\tilde{V}}O_2(CO_3)_3]^{5-}$, $[U^{V}O_2(saloph)DMSO]^{-}$, and $[U^VO_2(dbm)_2DMSO]^-$ in visible-NIR region can be assigned to the f-f transitions in the $U^{V}O_{2}^{+}$ core.

It is likely that the electronic spectra in Figure 6.4 is classified into two regions by the widths of the absorption bands; *Region I*: two narrower absorption peaks in the lower energy side (4800–7600 cm⁻¹), and *Region II*: the others with the larger widths (7600–17200 cm⁻¹). According to the previous papers,^{3,4,84,89,108}) it is well-understood for bare actinyl ions that the $5f\sigma_u$ and $5f\pi_u$ orbitals are involved in the axial An=O bonds and hence have antibonding characters. On the other hand, the $5f\delta_u$ and $5f\phi_u$ orbitals in the bare actinyl ion are nonbonding ones, which can interact with ligands in the equatorial plane. Thus, the typical energy

order of the 5f orbitals in the actinyl ion is,

$$5f\delta_u \approx 5f\phi_u < 5f\pi_u \ll 5f\sigma_u$$

Such a relationship should be kept even in the actinyl complexes with ligands in the equatorial plane, because of the generally accepted perturbation order, $V_{ax} \gg e^2/r_{ij} \ge H_{SO} > V_{eq}$ (Eq. 1.17, Chapter 1). Considering the less participation of the $5f\delta_u$ and $5f\phi_u$ orbitals in the axial U=O bonding, the narrower absorption peaks in *Region I* are understandable as the electronic transitions from the $5f(\delta_u \text{ or } \phi_u)$ orbital to other $5f\delta_u$ and/or $5f\phi_u$ ones. The absorption bands in *Region II* might be attributed to the transitions to the $5f\pi_u$ and $5f\sigma_u$ orbitals, because the larger participation of these 5f orbitals in the axial U=O bonding should cause broadening of the spectra by a vibronic coupling. According to the usual energy order of the 5f orbitals, the lower two absorption bands in *Region II* are attributable to the electronic transitions to the $5f\pi_u$ orbitals and the highest one should be that to the $5f\sigma_u$.

Since neptunyl(VI) species $(Np^{VI}O_2^{2^+})$ are isoelectronic with the uranyl(V) ones, $5f^1$, it is interesting to compare the electronic spectra of the uranyl(V) complexes observed in this study with those of the neptunyl(VI) species. Actually, the neptunyl(VI) species in the acidic aqueous solutions has been reported to have the absorption bands due to f–f transition as shown in Figure 1.9, Chapter $1.^{87,89,156-159}$ The well-established work for the polarized absorption spectra of the neptunyl(VI) complexes was reported by Denning *et al.*¹⁰¹ According to them, $[Np^{VI}O_2Cl_4]^{2^-}$ and $[Np^{VI}O_2(NO_3)_3]^-$ complexes also have the absorption bands due to the f–f transitions in the visible-NIR region. Furthermore, such experimental data have been compared with the recent quantum chemical calculations for $Np^{VI}O_2^{2^+}$ (bare ion) by Matsika and Pitzer.¹⁰⁷

To compare the electronic spectra of the uranyl(V) complexes with those of the neptunyl(VI) species, the energy values of the f-f transitions in the neptunyl(VI) species^{89, 101, 107)} are also collected in Table 6.1. In this comparison, the absorption band of each uranyl(V) complex in the range of 5290–5560 cm⁻¹ should correspond to the second excited state in the f-f transitions. According to the reported data of the neptunyl(VI) species, the first excited state in the f-f transitions places in the range from 447 to 2000 cm⁻¹,^{89,101,107} which is out of detection for the electronic spectra of the uranyl(V) complexes in this study. The transition energy values of the uranyl(V) complexes in Region I are very similar to those of the neptunyl(VI) species. Considering that the participation of the $5f\delta_u$ and $5f\phi_u$ orbitals in the axial Np=O bonding is also small, this similarity of the energy values supports our assignment that the absorption peaks of the uranyl(V) complexes in Region I are due to the electronic transitions to the 5f δ_u and 5f ϕ_u orbitals. On the other hand, the transition energy values of the uranyl(V) complexes in *Region II* (corresponding to the transitions to $5f\pi_u$) are much lower than those of the neptunyl(VI) species. Such a difference of the transition energy to the $5f\pi_u$ orbitals exhibits that the anti-bonding characters of the $5f\pi_u$ orbitals in the uranyl(V) complexes are lower than those in the neptunyl(VI) ones, *i.e.*, the U=O bond strength is weaker than Np=O one. This is consistent with the data of the v_3 peak and the force constant of An=O bond (An: U, Np) as shown in Table 5.1 in Chapter 5 ($v_3 = 770$ and 775 cm⁻¹, $F_{UO} =$ 5.31 mdyne·Å⁻¹ for the uranyl(V); $v_3 = 969 \pm 1 \text{ cm}^{-1}$, $F_{\text{NpO}} = 7.81 \pm 0.02 \text{ mdyne} \cdot \text{Å}^{-1}$ for the neptunyl(VI)¹⁵⁵⁾). Although the electronic transition to the $5f\sigma_u$ orbital in the neptunyl(VI) species has not been observed experimentally, McGlynn et al.⁸⁹ and Denning et al.¹⁰¹ estimated it at 24000 or 45000~120000 cm⁻¹ ($^{2}\Sigma_{1/2u}$), respectively. These are not comparable with the absorption bands at around 15600 cm⁻¹ ([U^VO₂(saloph)DMSO]⁻, [U^VO₂(dbm)₂-DMSO]⁻) and 13200 cm⁻¹ ([$U^VO_2(CO_3)_3$]⁵⁻) in Figure 6.4. Thus, uncertainty remains in

the assignment for the absorption band at the highest energy in the electronic spectrum of each uranyl(V) complex. However, if it is true that the absorption bands of these uranyl(V) complexes at 13200 ($[U^VO_2(CO_3)_3]^{5-}$), 15400 ($[U^VO_2(saloph)DMSO]^-$), and 15600 cm⁻¹ ($[U^VO_2(dbm)_2DMSO]^-$) are due to the transition to the $5f\sigma_u$ orbital, the unusual instability of most uranyl(V) species can be explained, because such a low anti-bonding character of the $5f\sigma_u$ orbital in each uranyl(V) complex means the unusually weak U=O bond strength.

To perform more detailed discussion for the electronic structure of the present uranyl(V) complexes, the splitting schemes of the 5f and related orbitals of the center uranium were examined by using the group theory. For the D_{6h} symmetric ligand filed, which is corresponding to $[U^VO_2(CO_3)_3]^{5-}$, the splitting scheme of the 5f orbitals and the hybridization of 5f, 6d and 7s orbitals were simulated by using a character table of D_{6h} point group shown in Table 6.2. Firstly, each 5f orbital must be assigned to the appropriate representation in D_{6h} , because normally the reported character tables do not contain the assignments for the f orbitals. The representation corresponding to each f orbital is given simply by multiplication of the characters in proper representations. For example, the representation of f_{z^3} orbital ($f\sigma_u$, m = 0) can be obtained as $A_{2u} \times A_{2u} \times A_{2u}$ (A_{2u} corresponds to z), resulting A_{2u} for f_{z^3} . Using the same procedure, other f orbitals were assigned as follows.

$$m = \pm 1, \ \mathbf{f}_{xz^2}, \ \mathbf{f}_{yz^2}(\pi_u) : \ A_{2u} \times E_{1g} = E_{1u}$$

$$(6.1)$$

$$m = \pm 2, \ \mathbf{f}_{xyz}, \ \mathbf{f}_{z(x^2 - y^2)}(\delta_u) : \ A_{2u} \times E_{2g} = E_{2u}$$
(6.2)

$$m = \pm 3, \ \mathbf{f}_{x(x^2 - 3y^2)}, \ \mathbf{f}_{y(3x^2 - y^2)}(\phi_u) : \ E_{2g} \times E_{1u} = \Gamma_{\mathbf{f}\phi_u}$$
(6.3)

where *m* is the magnetic quantum number. The representation $\Gamma_{f\phi_u}$ for ϕ_u (*m* = ±3, Eq. 6.3) can be reduced by the following usual treatment.¹⁹⁶⁾ The characters of $\Gamma_{f\phi_u}$ for 24 symmetric operations in D_{6h} are,

							rable	: 0.2.	Chara	iciei	lable	$D D_{6h}$	1		
D_{6h}	Ε	$2C_6$	$2C_3$	C_2	$3C'_{2}$	$3C_{2}''$	i	$2S_3$	$2S_6$	σ_h	$3\sigma_d$	$3\sigma_v$			
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$	
A_{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R_z		
B_{1g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	R_z		
B_{2g}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1			
E_{1g}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	(R_x, R_y)	(<i>xy</i> , <i>yz</i>)	
E_{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0		$(x^2 - y^2, xy)$	
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1			
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z		z^3
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1			$\int x(x^2 - 3y^2)$
B_{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1			$\int y(3x^2 - y^2)$
E_{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(<i>x</i> , <i>y</i>)		(xz^2, yz^2)
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0			$(xyz, z(x^2 - y^2))$

Table 6.2. Character table of D_0

6.3. Discussion

Therefore, the irreducible representation of $\Gamma_{f\phi_u}$ is calculated as,

Thus,

$$\Gamma_{f\phi_u} = B_{1u} + B_{2u} + E_{1u}(\pi_u) \tag{6.5}$$

where E_{1u} representation has already been used for f_{xz^2} and f_{yz^2} (π_u) (Eq. 6.1). Hence, the $f_{x(x^2-3y^2)}$ and $f_{y(3x^2-y^2)}$ (ϕ_u) orbitals are assigned to $B_{1u} + B_{2u}$ irreducible representation. The results of the assignments for f orbitals are also listed to the right-hand side of Table 6.2. In summary, each f orbital in the D_{6h} ligand field is assigned as;

$$\begin{aligned} & f_{z^3}(\sigma_u): a_{2u} \\ & f_{xz^2}, f_{yz^2}(\pi_u): e_{1u} \\ & f_{xyz}, f_{z(x^2-y^2)}(\delta_u): e_{2u} \\ & f_{x(x^2-3y^2)}, f_{y(3x^2-y^2)}(\phi_u): b_{1u} + b_{2u}. \end{aligned}$$

For σ bonding between the ligand atoms and the center uranium, the hybridization of the 5f, 6d, and 7s orbitals in the uranium atom was considered. The characters of the reducible representation for the hybrid orbitals of the σ bonding ($\Gamma_{\sigma hyb}$) in D_{6h} is,

The $\Gamma_{\sigma hyb}$ can be separated into the axial ($\Gamma_{\sigma ax}$) and equatorial ($\Gamma_{\sigma eq}$) components as follows.

D_{6h}	E	$2C_{6}$	$2C_{3}$	C_2	$3C'_{2}$	$3C_{2}''$	i	$2S_3$	$2S_6$	σ_h	$3\sigma_d$	$3\sigma_v$
$\Gamma_{\sigma \mathrm{hyb}}$	8	2	2	2	2	0	0	0	0	6	2	4
$\Gamma_{\sigma ax}$	2	2	2	2	0	0	0	0	0	0	2	2
$\Gamma_{\sigma e a}$	6	0	0	0	2	0	0	0	0	6	0	2

These reducible representations, $\Gamma_{\sigma ax}$ and $\Gamma_{\sigma eq}$, are reduced to the irreducible representations by the same procedure as Eq. 6.4. Consequently,

$$\Gamma_{\sigma ax} = A_{1g} + A_{2u} \tag{6.6}$$

$$\Gamma_{\sigma eq} = A_{1g} + E_{2g} + B_{1u} + E_{1u} \tag{6.7}$$

where each representation corresponds to 5f, 6d, or 7s orbitals as,

$$a_{1g}: s, d_{z^2}$$

$$a_{2u}: f_{z^3}$$

$$e_{2g}: (d_{x^2-y^2}, d_{xy})$$

$$b_{1u}: f_{x(x^2-3y^2)} \text{ or } f_{y(3x^2-y^2)}$$

$$e_{1u}: (f_{xz^2}, f_{yz^2}).$$

The A_{1g} and A_{2u} representations in $\Gamma_{\sigma ax}$ (Eq. 6.6) corresponds to $6d_{z^2}$ and $5f_{z^3}$, respectively, because it is well-known that these orbitals form the axial σ bonding as shown in Figure 1.2. For $\Gamma_{\sigma eq}$, it is reasonable to consider the combination of 7s (A_{1g}), ($6d_{x^2-y^2}$, $6d_{xy}$) (E_{2g}), and ($5f_{xz^2}$, $5f_{yz^2}$) (E_{1u}). The inclusion of B_{1u} in $\Gamma_{\sigma eq}$ means that either $5f_{x(x^2-3y^2)}$ or $5f_{y(3x^2-y^2)}$ orbital is participated in the formation of the D_{6h} hybrid orbital to interact with the equatorial ligand, *i.e.*, one of the $5f\phi_u$ orbitals becomes anti-bonding character. This is consistent with the splitting of the doubly degenerated $f_{x(x^2-3y^2)}$ and $f_{y(3x^2-y^2)}$ orbitals into b_{1u} and b_{2u} ones in D_{6h} symmetry described above. Thus, in this symmetry, it can be understood that the b_{1u} orbital is higher in energy than b_{2u} one. As a result, the energy order of the 5f orbitals in D_{6h} is summarized as;

$$e_{2u} (5f\delta_u) \approx b_{2u} (5f\phi_u) < b_{1u} (5f\phi_u) < e_{1u} (5f\pi_u) < a_{2u} (5f\sigma_u).$$

Here, it must be noted that the $5f\pi_u$ and $5f\phi_u$ orbitals are independent of other 6d and 7s ones even in the participation of these 5f orbitals into the hybrid orbitals to form the σ bonding between the center uranium and ligand atoms in D_{6h} symmetry, *i.e.*, any mixing of the 5f orbitals with others does not occur in D_{6h} symmetric ligand field. Therefore, the remaining schemes for the intensities of the f–f transitions in $[U^VO_2(CO_3)_3]^{5-}$ (Figure 6.4(a)) are the vibronic coupling between the electronic excited states and vibrational mode(s) with odd parity and/or magnetic-dipole or other multipole transitions.

In D_{5h} symmetric field for $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$, the 5f orbitals have also been attributed to the appropriate representations. Table 6.3 shows the character table of D_{5h} point group. According to the treatment similar to Eq. 6.4, the f orbitals in D_{5h} point group can be assigned as;

$$\begin{aligned} & f_{z^3}(\sigma_u): a_2'' \\ & f_{xz^2}, f_{yz^2}(\pi_u): e_1' \\ & f_{xyz}, f_{z(x^2-y^2)}(\delta_u): e_2'' \\ & f_{x(x^2-3y^2)}, f_{y(3x^2-y^2)}(\phi_u): e_2' \end{aligned}$$

These assignments for the f orbitals are also listed at the right-hand side of Table 6.3.

					Inco	e o.o. onar	acter table o	$r \nu sn$			
D_{5h}	Ε	$2C_{5}$	$2C_{5}^{2}$	$5C_2$	σ_h	2S ₅	$2S_{5}^{3}$	$5\sigma_v$			
A'_1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$	
A'_2	1	1	1	-1	1	1	1	-1	R_z		
E'_1	2	$2\cos 2/5\pi$	$2\cos 4/5\pi$	0	2	$2\cos 2/5\pi$	$2\cos 4/5\pi$	0	(<i>x</i> , <i>y</i>)		(xz^2, yz^2)
E_2'	2	$2\cos 4/5\pi$	$2\cos 2/5\pi$	0	2	$2\cos 4/5\pi$	$2\cos 2/5\pi$	0		$(x^2 - y^2, xy)$	$\begin{cases} x(x^2 - 3y^2) \\ y(3x^2 - y^2) \end{cases}$
A_1''	1	1	1	1	-1	-1	-1	-1			
$A_2^{\prime\prime}$	1	1	1	-1	-1	-1	-1	1	z		z^3
$E_1^{\prime\prime}$	2	$2\cos 2/5\pi$	$2\cos 4/5\pi$	0	-2	$-2\cos 2/5\pi$	$-2\cos 4/5\pi$	0	(R_x, R_y)	(xz, yz)	
E_2''	2	$2\cos 4/5\pi$	$2\cos 2/5\pi$	0	-2	$-2\cos 4/5\pi$	$-2\cos 2/5\pi$	0			$(xyz, z(x^2 - y^2))$

Table 6.3. Character table of D_{5h}
6.3. Discussion

The hybridization of 5f, 6d, and 7s orbitals in the center metal to form the σ bonds with ligand atoms in D_{5h} symmetry was examined. The characters of $\Gamma_{\sigma hyb}$ (= $\Gamma_{\sigma ax} + \Gamma_{\sigma eq}$) for the symmetric operations in this system are,

D_{5h}	E	$2C_5$	$2C_{5}^{2}$	$5C_2$	σ_h	$2S_5$	$2S_{5}^{3}$	$5\sigma_v$
$\Gamma_{\sigma \mathrm{hyb}}$	7	2	2	1	5	0	0	3
$\Gamma_{\sigma ax}$	2	2	2	0	0	0	0	2
$\Gamma_{\sigma eq}$	5	0	0	1	5	0	0	1

As a result, the irreducible representations of $\Gamma_{\sigma ax}$ and $\Gamma_{\sigma eq}$ are obtained as,

$$\Gamma_{\sigma ax} = A_1' + A_2'' \tag{6.8}$$

$$\Gamma_{\sigma eq} = A'_1 + E'_1 + E'_2. \tag{6.9}$$

From Table 6.3, these representations correspond to the 5f, 6d, or 7s orbitals as follows.

$$\begin{aligned} a_1': s, d_{z^2} \\ a_2'': f_{z^3} \\ e_1': (f_{xz^2}, f_{yz^2}) \\ e_2': (d_{x^2-y^2}, d_{xy}), (f_{x(x^2-3y^2)}, f_{y(3x^2-y^2)}) \end{aligned}$$

The same assignment with the D_{6h} system can also be performed here, that is, the A'_1 and A''_2 representations in $\Gamma_{\sigma ax}$ are attributable to the $6d_{z^2}$ and $5f_{z^3}$ orbitals, respectively. In $\Gamma_{\sigma eq}$, it is immediately found that the A'_1 and E'_1 representations correspond to 7s and $(5f_{xz^2}, 5f_{yz^2})$, respectively. To E'_2 in $\Gamma_{\sigma eq}$, both sets of $(6d_{x^2-y^2}, 6d_{xy})$ and $(5f_{x(x^2-3y^2)}, 5f_{y(3x^2-y^2)})$ can be assigned. This result indicates a probability that the mixing of these $6d\delta_g$ and $5f\phi_u$ orbitals occurs in the center uranium immersed into the D_{5h} ligand field. Such a phenomenon has not been observed in the D_{6h} symmetry, in other words, the $6d\delta_g - 5f\phi_u$ mixing is intrinsic in the D_{5h} system. Furthermore, the participation of $5f\phi_u$ ($f_{x(x^2-3y^2)}$, $f_{y(3x^2-y^2)}$) orbitals in the σ bonding implies that these 5f orbitals are made to have anti-bonding character by the D_{5h} ligand field. Hence, the energy order of the 5f orbitals in D_{5h} is,

$$e_{2}^{\prime\prime}(5f\delta_{u}) < e_{2}^{\prime}(5f\phi_{u}) < e_{1}^{\prime}(5f\pi_{u}) < a_{2}^{\prime\prime}(5f\sigma_{u}).$$

Finding the possibility of the d–f mixing, the f–f transition in D_{5h} symmetric ligand field is no longer pure transition between 5f orbitals, may have characters of f–d or d–f transitions. Therefore, the intensities of the f–f transitions in $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2-DMSO]^-$ can be borrowed from the f–d or d–f transitions. The selection rule of the f–f transitions in D_{5h} system were studied below. The transition probability Q is proportional to the following integration.

$$Q \propto \int \psi_e^* \mu \psi_e \, d\tau \tag{6.10}$$

where ψ_e and ψ_e^* are the electronic wave function of ground and excited states, respectively, and μ is a transition moment polarized to (x, y) or z directions. To obtain non-zero value of Q, the representation $\Gamma[\psi_e^*\mu\psi_e]$ must contain A'_1 representation. From the energy order of the 5f orbitals in D_{5h} , it is likely that the unpaired electron in the uranyl(V) complex is placed in one of the e''_2 (5f δ_u) orbitals, *i.e.*, the ground state is E''_2 ($^2\Delta_u$ in $D_{\infty h}$). The representations $\Gamma^m_{\alpha-\beta}$ (α, β : Greek letter expression of the 5f orbitals, *m*: polarized axis of μ (m = (x, y), z)) for the possible sets are obtained as,

$$E_{2}^{\prime\prime} \rightarrow E_{2}^{\prime} (5f\delta_{u} \rightarrow 5f\phi_{u}) :$$

$$\Gamma_{\delta-\phi}^{(x,y)} = E_{2}^{\prime} \times E_{1}^{\prime\prime} \times E_{2}^{\prime\prime} = A_{1}^{\prime\prime} + A_{2}^{\prime\prime} + 2E_{1}^{\prime\prime} + E_{2}^{\prime\prime}$$
(6.11)

$$\Gamma_{\delta-\phi}^{z} = E_{2}' \times A_{2}'' \times E_{2}'' = A_{1}' + A_{2}' + E_{1}'$$
(6.12)

$$E_{2}^{\prime\prime} \rightarrow E_{1}^{\prime} \left(5f\delta_{u} \rightarrow 5f\pi_{u} \right) :$$

$$\Gamma_{\delta-\pi}^{(x,y)} = E_{1}^{\prime} \times E_{1}^{\prime} \times E_{2}^{\prime\prime} = A_{1}^{\prime\prime} + A_{2}^{\prime\prime} + E_{1}^{\prime\prime} + 2E_{2}^{\prime\prime}$$
(6.13)

$$\Gamma_{\delta-\pi}^{z} = E_{1}' \times A_{2}'' \times E_{2}'' = E_{1}' + E_{2}'$$
(6.14)

and
$$E_2'' \to A_2'' (5f\delta_u \to 5f\sigma_u)$$
:
 $\Gamma_{\delta-\sigma}^{(x,y)} = A_2'' \times E_1' \times E_2'' = E_1' + E_2'$
 $\Gamma_{\delta-\sigma}^z = A_2'' \times A_2'' \times E_2'' = E_2''.$
(6.15)
(6.16)

Thus, in the irreducible representations of these f-f transitions, only $\Gamma_{\delta-\phi}^z$ contains A'_1 . Hence, in the D_{5h} symmetric ligand field, only the $E''_2 \rightarrow E'_2$ transition polarized in z axis in the uranyl(V) complex is allowed by the d-f mixing, and others may mainly borrow their intensities from the vibronic coupling. In this study, the polarized absorption spectra were not examined.

In the discussion about the electronic structures of actinyl species, the spin-orbit coupling must not be ruled out, because the spin-orbit coupling has important effect on them, especially for the 5f¹ systems (no electronic repulsion). Actually, five absorption bands can be detected in each electronic spectrum of the uranyl(V) complex (Figure 6.4) in spite of the smaller numbers of the electronic transitions predicted in the D_{6h} and D_{5h} symmetric ligand fields. This fact is considered to be due to the presence of the spin-orbit coupling effect. Each uranyl(V) complex has one odd electron in its 5f orbital. This makes the value of total angular momentum (**J**) be half-integer. Therefore, to consider the spin-orbit coupling in the uranyl(V) complexes, the double group must be used instead of the simple group such as D_{6h} and D_{5h} .¹ The character tables of the double groups, D_6^* and D_5^* , corresponding to D_6 and D_5 simple groups have been reported previously,¹⁹⁷⁾ and shown in Tables 6.4 and 6.5, respectively.²

In D_{6h} point group assumed for $[U^VO_2(CO_3)_3]^{5-}$, the energy order of the electronic states (configurations) was,

$$\chi(\alpha + 2\pi) = \frac{\sin(\mathbf{J} + \frac{1}{2})(\alpha + 2\pi)}{\sin(\alpha + 2\pi)/2} = -\chi(\alpha)$$

where $\chi(\alpha)$ is a character of α rotational operation. In this case, the 2π rotation cannot belongs to any representation of simple group. To solve such a difficulty, Bethe introduced an assumption that the 2π rotation is assigned operation *R* which is not *E*. As a result, the point group including *R* and its related rotational operations, so-called "double group", was created.¹⁹⁶⁾

²The point groups D_{6h} and D_{5h} are those added the inversion center (*i*) and/or horizontal mirror plane (σ_h) to the corresponding pure rotational sub-groups, D_6 and D_5 , respectively. Thus, all required informations about the f orbitals are obtained only by using such pure rotational sub-groups and their double groups.

¹When **J** is half-integer, the 2π rotation is no longer the identity operation *E*, because;

			Tuble 0.1. Character tuble of D_6										
1	D_{6}^{*}	Ε	R	$2C_6$	$2C_6R$	$2C_3$	$2C_3R$	C_2	$C_2 R$	$3C'_2$	$3C'_2R$	$3C_{2}''$	$3C_2''R$
Γ_1	A'_1	1	1	1	1	1	1	1	1	1	1	1	1
Γ_2	A'_2	1	1	1	1	1	1	1	1	-1	-1	-1	-1
Γ_3	B'_1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
Γ_4	B'_2	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1
Γ_5	E'_1	2	2	1	1	-1	-1	-2	-2	0	0	0	0
Γ_6	E'_2	2	2	-1	-1	-1	-1	2	2	0	0	0	0
Γ_7	E'	2	-2	$\sqrt{3}$	$-\sqrt{3}$	1	-1	0	0	0	0	0	0
Γ_8	$E^{\prime\prime}$	2	-2	$-\sqrt{3}$	$\sqrt{3}$	1	-1	0	0	0	0	0	0
Г9	$E^{\prime\prime\prime}$	2	-2	0	0	-2	2	0	0	0	0	0	0

Table 6.4. Character table of D_{ϵ}^*

This character table is according to "Theory of Transition-Metal Ions" by Griffith.¹⁹⁷⁾

$$E_{2u} (5f\delta_u^1) \approx B_{2u} (5f\phi_u^1) < B_{1u} (5f\phi_u^1) < E_{1u} (5f\pi_u^1) < A_{2u} (5f\sigma_u^1)$$

These states correspond to the representations in D_6^* double group as follows.

D_{6h}	D_6^*
A_{2u} (5f σ_u^1)	$\Gamma_2(A'_2)$
$E_{1u} (5 f \pi_u^1)$	$\Gamma_5, (E'_1)$
$B_{1u}, B_{2u} (5 f \phi_u^1)$	$\Gamma_3, \Gamma_4, (B'_1, B'_2)$
E_{2u} , $(5f\delta_u^1)$	$\Gamma_6, (E'_2)$

The characters (χ) of the representation of the spin component ψ_s (Γ_{ψ_s}) in the total wave function are readily obtained from the following equations.¹⁹⁶⁾

$$\chi(E) = 2\mathbf{S} + 1 \tag{6.17}$$

$$\chi(R) = -(2\mathbf{S} + 1) \tag{6.18}$$

$$\chi(\alpha) = \frac{\sin(\mathbf{S} + \frac{1}{2})\alpha}{\sin \alpha/2} \quad (\alpha = 2m\pi/n \text{ for } C_n^m) \tag{6.19}$$

where $S = \frac{1}{2}$ because of the 5f¹ configuration of the uranyl(V) species. The results are,

The Γ_{ψ_s} is already the irreducible representation Γ_7 . The representations of the electronic states including the spin-orbit coupling are found from the direct products of their representations. That is,

$$5f\sigma_u^1: \ \Gamma_2 \times \Gamma_7 = \Gamma_7 \tag{6.20}$$

$$5f\pi_u^1: \ \Gamma_5 \times \Gamma_7 = \Gamma_7 + \Gamma_9 \tag{6.21}$$

$$5f\phi_u^1: \begin{cases} \Gamma_3 \times \Gamma_7 = \Gamma_8\\ \Gamma_4 \times \Gamma_7 = \Gamma_8 \end{cases}$$
(6.22)

$$5f\delta_u^1: \ \Gamma_6 \times \Gamma_7 = \Gamma_8 + \Gamma_9 \tag{6.23}$$

All irreducible representations for the 5f orbitals are doublets, which are based on Kramer's theorem.

It is obvious that, in the $5f\sigma_u^1$ configuration, the representation Γ_7 corresponds to $\mathbf{J} = \frac{1}{2}$, because $\mathbf{L} = 0$ and $\mathbf{S} = \frac{1}{2}$, thus $\mathbf{J} = \mathbf{L} + \mathbf{S} = |\mathbf{L} - \mathbf{S}| = \frac{1}{2}$. Therefore, Γ_9 in $5f\pi_u^1$ (Eq. 6.21) is immediately found to be $\mathbf{J} = \frac{3}{2}$, followed by the assignment of Γ_8 in $5f\delta_u^1$ (Eq. 6.23) to $\mathbf{J} = \frac{5}{2}$. The $5f\phi_u^1$ configuration is a little problematic, because both representations of $\mathbf{J} = \frac{5}{2}$ and $\mathbf{J} = \frac{7}{2}$ are Γ_8 . However, it has already been revealed that the $5f\phi_u$ orbital is split into b_{1u} and b_{2u} orbitals in the D_{6h} symmetric ligand field, and that the energy order of the corresponding states is $B_{2u}(\Gamma_4) < B_{1u}(\Gamma_3)$. Therefore, Γ_8 from $\Gamma_3 \times \Gamma_7$ may be assigned to $\mathbf{J} = \frac{7}{2}$, and the other Γ_8 from $\Gamma_4 \times \Gamma_7$ is to $\mathbf{J} = \frac{5}{2}$. The energy order from the \mathbf{J} term is standing on Hunt's rule.

				Table 6.	5. Character	table of D_5^*				
	D_5^*	E	R	$2C_{5}$	$2C_5R$	$2C_{5}^{2}$	$2C_{5}^{2}R$	$5C_2$	$5C_2R$	
Γ_1	A'_1	1	1	1	1	1	1	1	1	
Γ_2	A'_2	1	1	1	1	1	1	-1	-1	
Γ_3	E'_1	2	2	$2\cos 2/5\pi$	$2\cos 2/5\pi$	$2\cos 4/5\pi$	$2\cos 4/5\pi$	0	0	
Γ_4	E'_2	2	2	$2\cos 4/5\pi$	$2\cos 4/5\pi$	$2\cos 2/5\pi$	$2\cos 2/5\pi$	0	0	
Γ_5	E'	2	-2	$-2\cos 4/5\pi$	$2\cos 4/5\pi$	$2\cos 2/5\pi$	$-2\cos 2/5\pi$	0	0	
Γ_6	$E^{\prime\prime}$	2	-2	$-2\cos 2/5\pi$	$2\cos 2/5\pi$	$2\cos 4/5\pi$	$-2\cos 4/5\pi$	0	0	
Б	Γ'' $(\rho_1$	1	-1	-1	1	1	-1	i	-i	
17	$E^{m} \left\{ \rho_{2} \right\}$	1	-1	-1	1	1	-1	-i	i	
	V							107)		

This character table is according to "Theory of Transition-Metal Ions" by Griffith.¹⁹⁷⁾

Smilarly, the D_5^* double group was applied to the systems of $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2DMSO]^-$. The energy order of the electronic states (configurations) in these complexes is,

$$E_2''(5f\delta_u^1) < E_2'(5f\phi_u^1) < E_1'(5f\pi_u^1) < A_2''(5f\sigma_u^1).$$

These states correspond to the representations in D_5^* double group as follows.

D_{5h}	D_5^*
$A_2^{\prime\prime}$ (5f σ_u^1)	$\Gamma_2(A_2')$
$E'_{1} (5 f \pi^{1}_{u})$	$\Gamma_3, (E'_1)$
$E_{2}'(5f\phi_{u}^{1})$	$\Gamma_4, (E'_2)$
$E_2^{\prime\prime}$, (5f δ_u^1)	$\Gamma_4, (\tilde{E'_2})$

The characters $(\chi(\Gamma_{\psi_s}))$ for $\mathbf{S} = \frac{1}{2}$ in D_5^* double group are also obtained by using Eqs. 6.17–6.19. As a result,

This Γ_{ψ_s} is also irreducible, *i.e.*, $\Gamma_{\psi_s} = \Gamma_5$. Therefore, the representations of the electronic

states including the spin-orbit coupling are obtained as,

$$5f\sigma_u^1: \ \Gamma_2 \times \Gamma_5 = \Gamma_5\left(\frac{1}{2}\right) \tag{6.24}$$

$$5f\pi_{u}^{1}: \ \Gamma_{3} \times \Gamma_{5} = \Gamma_{5}\left(\frac{1}{2}\right) + \Gamma_{6}\left(\frac{3}{2}\right)$$
(6.25)

$$5f\pi_{u}^{1}: \Gamma_{3} \times \Gamma_{5} = \Gamma_{5}\left(\frac{1}{2}\right) + \Gamma_{6}\left(\frac{3}{2}\right)$$

$$5f\phi_{u}^{1}: \Gamma_{4} \times \Gamma_{5} = \Gamma_{6}\left(\frac{7}{2}\right) + \Gamma_{7}\left(\frac{5}{2}\right)$$
(6.26)

$$5f\delta_{u}^{1}: \ \Gamma_{4} \times \Gamma_{5} = \Gamma_{6}\left(\frac{3}{2}\right) + \Gamma_{7}\left(\frac{5}{2}\right)$$
(6.27)

where the fractions in the parentheses are the corresponding \mathbf{J} terms which were determined according to the similar discussion performed in the D_6^* double group. The presence of Kramer's doublets was also found.

In the analysis using group theory, the exact energy values of the electronic states cannot be calculated. Considering that the lowest absorption peak of each uranyl(V) complexes in Figure 6.4 is assigned to the second excited state, the first one may be expected to be at around $10^2 \sim 10^3$ cm⁻¹, because the corresponding states of the isoelectronic neptunyl(VI) species were reported at around 2000, 1000, and 447 cm⁻¹ as shown in Table 6.1. Consequently, the most acceptable energy diagrams starting from the 5f atomic orbital and terminating at [U^VO₂(CO₃)₃]⁵⁻, [U^VO₂(saloph)DMSO]⁻, and [U^VO₂(dbm)₂DMSO]⁻ through each ligand field (D_{6h}, D_{5h}) and the spin-orbit coupling effects were estimated as shown in Figure 6.5.

Figure 6.5. Energy diagrams of $[U^VO_2(CO_3)_3]^{5-}$ (upper), $[U^VO_2(saloph)DMSO]^-$, and $[U^VO_2(dbm)_2DMSO]^-$ (lower) including the D_{6h} or D_{5h} symmetric ligand field and the spin-orbit coupling effects. **J** terms are at the right-hand side of the energy states.

Chapter 7 Conclusion

I have studied the molecular structures, electronic spectra, and reactivities of uranyl(V) and -(VI) complexes by using various methods; X-ray diffractive, spectroscopic, and electrochemical measurements. Here, the results in this study are outlined and summarized as a conclusion of this doctoral thesis.

Chapter 1. As background of this doctoral thesis, the previous studies on properties of actinyl species were summarized, and the fact that little information is available concerning uranyl(V) complexes was pointed out. From this viewpoint, the objectives of this thesis was described.

Chapter 2. The uranyl(VI) complexes, $Na_4[U^{VI}O_2(CO_3)_3]$, $U^{VI}O_2(saloph)DMF$, $U^{VI}O_2$ -(saloph)DMSO, and $U^{VI}O_2(dbm)_2DMSO$, were selected as candidates to form stable uranyl(V) complexes. In order to discuss the properties of the uranyl(V) complexes, it was necessary to know those of the corresponding uranyl(VI) complexes firstly. Thus, in Chapter 2, syntheses and characterizations of the uranyl(VI) complexes, $Na_4[U^{VI}O_2(CO_3)_3]$, $U^{VI}O_2(saloph)DMF$, $U^{VI}O_2(saloph)DMSO$, and $U^{VI}O_2(dbm)_2DMSO$ have been performed not only in the solid state, but also in the solution state by using IR, Raman, NMR spectroscopies, and/or single crystal X-ray analyses.

The sodium salt of $[U^{VI}O_2(CO_3)_3]^{4-}$ showed the symmetric (v_1) and asymmetric stretching peaks (v_3) in the uranyl(VI) moiety at 806 and 852 cm⁻¹, respectively. The v_3 peak of Na₄[$U^{VI}O_2(CO_3)_3$] is somewhat unusual, because such a peak in uranyl(VI) compounds is ranging from 900 to 950 cm⁻¹ normally. Furthermore, the characteristic absorption bands of the uranyl(VI) ion in the UV-visible absorption spectrum and the coordination number of CO_3^{2-} from the ¹³C NMR spectrum indicated that the uranyl(VI) species exists as [$U^{VI}O_2$ -(CO_3)₃]⁴⁻ in the aqueous solution containing excess amount of Na₂CO₃.

The synthesis of U^{VI}O₂(saloph)DMF was confirmed by IR spectroscopy and single crystal X-ray analysis. The v_3 peak of U^{VI}O₂(saloph)DMF was observed at 905 cm⁻¹, which is usual for uranyl(VI) compounds. From the red shift of the C=N stretching of saloph and C=O stretching of DMF, their coordinations to the uranyl(VI) ion were evidenced. The single crystal X-ray analysis for U^{VI}O₂(saloph)DMF gave the typical molecular structure of $U^{VI}O_2(saloph)L$; linear uranyl(VI) moiety, pentagonal bipyramidal geometry formed by tetradentate saloph and unidentate ligand (L = DMF), and largely distorted structure of saloph. From the ¹H NMR spectra of the dichloromethane and chloroform solutions prepared by dissolving U^{VI}O₂(saloph)DMF, it was found that the dimerization of U^{VI}O₂(saloph)-DMF occurs in these solutions. This reaction produces $[U^{VI}O_2(saloph)]_2$, which is the dinuclear uranyl(VI) complex bridged by one of the oxygen atoms of saloph in each $U^{VI}O_2$ -(saloph) unit. Since the saloph ligand is also distorted in $[U^{VI}O_2(saloph)]_2$, this dinuclear uranyl(VI) complex is enantiomerized, and hence its crystal is racemic. By using UV-visible absorption and ¹H NMR spectroscopies, the thermodynamic parameters and the equilibrium constants at 298 K for the dimerization reaction of U^{VI}O₂(saloph)DMF were evaluated as $\Delta H_{\text{dim}} = 33.0 \pm 0.7 \text{ kJ} \cdot \text{mol}^{-1}, \Delta S_{\text{dim}} = 68 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}, \text{ and } \log K_{\text{dim}} = -2.52 \pm 0.01 \text{ for the}$ dichloromethane system and $\Delta H_{\text{dim}} = 11.3 \pm 0.6 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S_{\text{dim}} = 8.0 \pm 2.4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $\log K_{\rm dim} = -1.74 \pm 0.01$ for the chloroform system. To obtain further data for the reactivity of U^{VI}O₂(saloph)DMF, the DMF exchange reaction in this uranyl(VI) complex was also studied by using NMR line-broadening method. As a result, it was suggested that the DMF exchange reaction in U^{VI}O₂(saloph)DMF proceeds through the dissociative mechanism. The activation parameters and the first-order rate constant were estimated as $\Delta H^{\ddagger} = 19 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = -118 \pm 4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $k_{\text{ex}} = 1.68 \times 10^3 \text{ s}^{-1}$ in the dichloromethane system.

The U^{VI}O₂(saloph)DMSO complex was also investigated to examine the effect of the unidentate ligand on the stability and reactivity of the uranyl(V) and -(VI) saloph complexes. The structural properties of U^{VI}O₂(saloph)DMSO were almost same as those of $U^{VI}O_2(saloph)DMF$; $v_3 = 897 \text{ cm}^{-1}$, linear uranyl(VI) moikety, pentagonal bipyramidal geometry constructed from saloph and unidentate DMSO, and largely distorted saloph ligand. The reactivities of $U^{VI}O_2$ (saloph)DMSO such as the dimerization to form $[U^{VI}O_2$ - $(saloph)]_2$ and the dissociative DMSO exchange reaction in U^{VI}O₂(saloph)DMSO were also confirmed. The thermodynamic parameters and the equilibrium constants at 298 K for the dimerization of U^{VI}O₂(saloph)DMSO were evaluated as $\Delta H_{dim} = 39 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S_{\rm dim} = 52 \pm 6 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $\log K_{\rm dim} = -4.28 \pm 0.06$ for the dichloromethane system and $\Delta H_{\text{dim}} = 22 \pm 1 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S_{\text{dim}} = 14 \pm 4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $\log K_{\text{dim}} = -3.09 \pm 0.08$ for the chloroform system. Furthermore, the activation parameter and the first-order rate constant for the DMSO exchange reaction in U^{VI}O₂(saloph)DMSO were estimated as ΔH^{\ddagger} = $29.7 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\pm} = -83 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $k_{\text{ex}} = 1.63 \times 10^3 \text{ s}^{-1}$ in the dichloromethane system. In the comparison between the reactivities of U^{VI}O₂(saloph)DMF and U^{VI}O₂-(saloph)DMSO, it was clarified that the coordination ability of DMSO to U^{VI}O₂(saloph) unit is stronger than that of DMF.

The alternative uranyl(VI) complex, U^{VI}O₂(dbm)₂DMSO, was also characterized by using the same methods. The v_3 peak of U^{VI}O₂(dbm)₂DMSO was observed at 906 cm⁻¹. From the result of the single crystal X-ray analysis for U^{VI}O₂(dbm)₂DMSO, it was found that this uranyl(VI) complex also has the pentagonal bipyramidal structure consisting of two bidentate dbm ligands and one unidentate DMSO. The structural properties of U^{VI}O₂(dbm)₂DMSO were similar to those of U^{VI}O₂(saloph)DMSO in the solid state . However, U^{VI}O₂(dbm)₂-DMSO showed different aspect from $U^{VI}O_2(saloph)L$ in solutions. The intramolecular exchange reaction of the phenyl ring position of dbm nearer to and further from the coordinated DMSO and the rotation of the phenyl ring were observed as the broadening of the ¹H NMR signals due to o-protons. The first-order rate constant of the intramolecular exchange was estimated as 9.2×10^1 s⁻¹ at 273 K. The DMSO exchange reaction in U^{VI}O₂(dbm)₂DMSO was also studied by using the NMR line-broadening method. As a result, it was proved that the coordinated DMSO in U^{VI}O₂(dbm)₂DMSO exchanges with free one dissociatively as well as $U^{VI}O_2(saloph)L$. The activation parameters and the first-order rate constants for the DMSO exchange reaction were calculated as $\Delta H^{\ddagger} = 30 \pm 2 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\ddagger} = -88 \pm 5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, and $k_{\rm ex} = 2.0 \times 10^2 \,\text{s}^{-1} \,(273 \,\text{K}), \, 6.8 \times 10^2 \,\text{s}^{-1} \,(298 \,\text{K})$ in the dichloromethane system. Comparing these results for U^{VI}O₂(dbm)₂DMSO with those for U^{VI}O₂(saloph)DMSO, it was concluded that the coordination of DMSO to $U^{VI}O_2(dbm)_2$ unit is stronger than that to $U^{VI}O_2(saloph)$ unit.

Chapter 3. The uranyl(V) carbonate complex, $[U^VO_2(CO_3)_3]^{5-}$, is traditionally know as a stable uranyl(V) species. However, the chemistry of this known uranyl(V) complex has not been established sufficiently. In this chapter, I have tried to elucidate the electrochemical and kinetic properties of $[U^VO_2(CO_3)_3]^{5-}$.

In the UV-visible spectroelectrochemical measurements for the redox couple of $[U^VO_2-(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$, the disappearance of the LMCT absorption bands of $[U^{VI}O_2-(CO_3)_3]^{4-}$ was observed with the reduction to $[U^VO_2(CO_3)_3]^{5-}$. The absorbancies at different potentials were analyzed by the Nernstian equation. As a result, the electron stoichiometry

and the formal potentials the redox couple of $[U^VO_2(CO_3)_3]^{5-}/[U^{VI}O_2(CO_3)_3]^{4-}$ were evaluated as 0.90 ± 0.02 and -0.751 ± 0.001 V vs. Ag/AgCl, respectively. The electrochemical data were used for the preparation of $[U^VO_2(CO_3)_3]^{5-}$ in Section 3.2 and Chapter 6. Further, the discussion on the stability of $[U^VO_2(CO_3)_3]^{5-}$ in basic carbonate aqueous solution was performed from the reported thermodynamic data.

To examine the reactivity of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$, its CO_{3}^{2-} exchange reaction was studied by using ¹³C NMR spectroscopy. The NMR signals of free and coordinated CO_{3}^{2-} in the D₂O solution containing Na₂CO₃ (1.003 M) and $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ (4.598×10⁻² M) were observed at 169.13 and 106.70 ppm, respectively. From the peak areas, the coordination number of CO_{3}^{2-} was determined as 2.8 ± 0.1, indicating the existence of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$. The kinetic analysis for the CO_{3}^{2-} exchange reaction in $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ was performed by the nonlinear least-squares fit of the theoretical equation. Consequently, the activation parameters and the first-order rate constant at 298 K were evaluated as $\Delta H^{\ddagger} = 62.0 \pm 0.7$ kJ·mol⁻¹, $\Delta S^{\ddagger} =$ 22 ± 3 J·mol⁻¹·K⁻¹, and $k_{ex} = 1.13 \times 10^{3}$ s⁻¹ in 1 M Na₂CO₃ aqueous system. It was impossible to examine the CO_{3}^{2-} exchange reaction of $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ in the aqueous media with lower concentration of Na₂CO₃, because $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ is not stable in such systems. However, the dissociative mechanism for the CO_{3}^{2-} exchange reaction in $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ was proposed from the viewpoint of its saturated coordination sites and the positive value of ΔS^{\ddagger} . Since the k_{ex} value for $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ (1.13 × 10³ s⁻¹) is 10² times larger than that for $[U^{V}O_{2}(CO_{3})_{3}]^{4-}$ (13 s⁻¹), the bond strength between U and CO_{3}^{2-} in $[U^{V}O_{2}(CO_{3})_{3}]^{5-}$ was considered to be weaker than that in $[U^{VI}O_{2}(CO_{3})_{3}]^{4-}$. This is the first kinetic information of uranyl(V) complex.

Chapter 4. In order to find out systems of the stable uranyl(V) complexes in nonaqueous solvents, the electrochemical properties of the uranyl(VI) complexes, $U^{VI}O_2(saloph)DMF$, $U^{VI}O_2(saloph)DMSO$, and $U^{VI}O_2(dbm)_2DMSO$, were studied by the cyclic voltammetry and the UV-visible spectroelectrochemical measurements.

For U^{VI}O₂(saloph)DMF, the electrochemical reaction of U^{VI}O₂(saloph)DMF accompanied by the successive reaction of $[U^VO_2(saloph)DMF]^-$ was observed in the cyclic voltammograms. This phenomenon was also evidenced by the UV-visible spectroelectrochemical measurement. This indicated that $[U^VO_2(saloph)DMF]^-$ is not stable in DMF. From the cyclic voltammograms of U^{VI}O₂(saloph)DMF measured in the mixed solvent systems of DMF and dichloromethane, the successive reaction of $[U^VO_2(saloph)DMF]^-$ was determined to be the dissociation of the coordinated DMF from $[U^VO_2(saloph)DMF]^-$. The roughly estimated dissociation constant was 5 M. Furthermore, on the basis of the kinetic result that k_{ex} in $[U^VO_2(CO_3)_3]^{5-}$ is 10^2 times faster than that of $[U^{VI}O_2(CO_3)_3]^{4-}$ in Chapter 3, the DMF exchange reaction in $[U^VO_2(saloph)DMF]^-$ was estimated to occur in ~10⁵ s⁻¹.

The electrochemical and spectroelectrochemical measurements similar to the system of $[U^VO_2(saloph)DMF]^-/U^VO_2(saloph)DMF$ were performed for $U^{VI}O_2(saloph)DMSO$. In this system, any successive reactions of $[U^VO_2(saloph)DMSO]^-$ have not been observed in the results of the cyclic voltammetry and the UV-visible spectroelectrochemical measurements. From the Nernstian analysis for the absorbancies at different potentials, the electron stoichiometry and the formal potential were evaluated as 1.09 ± 0.02 and -1.550 ± 0.001 V vs. Fc/Fc⁺, respectively. In the mixed solvent systems of DMSO and dichloromethane, the DMSO dissociation from $[U^VO_2(saloph)DMSO]^-$ was also observed. The roughly estimated dissociation constant was 0.5 M. This value means the stronger coordination ability of DMSO to $[U^VO_2(saloph)]^-$ than that of DMF as expected in Chapter 2. The DMSO ex-

change reaction in $[U^VO_2(saloph)DMSO]^-$ was also estimated to occur in ~10⁵ s⁻¹ on the basis of the kinetic result of $[U^VO_2(CO_3)_3]^{5-}$. As a result, $[U^VO_2(saloph)DMSO]^-$ in DMSO was found to be a system of a stable uranyl(V) complex. This is the first example of the stable uranyl(V) complex in nonaqueous solvents.

For $U^{VI}O_2(dbm)_2DMSO$, the corresponding uranyl(V) complex $[U^VO_2(dbm)_2DMSO]^$ did not show any successive reaction in DMSO as well as $[U^VO_2(saloph)DMSO]^-$. The evaluated values of the electron stoichiometry and the formal potential of the electrochemical reaction of $U^{VI}O_2(dbm)_2DMSO$ were 0.92 ± 0.03 and -1.366 ± 0.004 V vs. Fc/Fc⁺, respectively. The DMSO exchange reaction in $[U^VO_2(dbm)_2DMSO]^-$ was also estimated to occur in ~10⁴ s⁻¹ by the same discussion. As a result, it was clarified that $[U^VO_2(dbm)_2-$ DMSO]⁻ stably exists in the DMSO solution. This is the second example of the stable uranyl(V) complex in nonaqueous solvents.

Chapter 5. To obtain the data of the molecular structures of the uranyl(V) complexes, the IR spectroelectrochemical measurements were performed for the redox couples of $[U^VO_2$ -(saloph)DMSO]⁻/U^{VI}O₂(saloph)DMSO and [U^VO₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO in DMSO found in Chapter 4. With the reduction from $U^{VI}O_2(saloph)DMSO$ to $[U^VO_2(saloph)-$ DMSO]⁻, the ν_3 peak of the uranyl(VI) moiety in U^{VI}O₂(saloph)DMSO at 895 cm⁻¹ was vanished and that of uranyl(V) moiety in $[U^VO_2(saloph)DMSO]^-$ appeared at 770 cm⁻¹. The difference of the v_3 peaks of these uranyl(V) and -(VI) complexes was 125 cm⁻¹. In the system of [U^VO₂(dbm)₂DMSO]⁻/U^{VI}O₂(dbm)₂DMSO, quite similar phenomenon was observed; v_3 of U^{VI}O₂(dbm)₂DMSO: 906 cm⁻¹, v_3 of [U^VO₂(dbm)₂DMSO]⁻: 775 cm⁻¹, and $\Delta v_3 = 131 \text{ cm}^{-1}$. Furthermore, it should be noted that any remarkable changes in the IR peaks due to saloph and dbm have not been observed with the reduction from uranyl(VI) to uranyl(V). By using the empirical relationship between the U=O distance (R_{UO}) and its force constant ($F_{\rm UO}$) derived from v_3 , the $R_{\rm UO}$ values in [U^VO₂(saloph)DMSO]⁻ and $[U^{V}O_{2}(dbm)_{2}DMSO]^{-}$ were evaluated as 1.84 Å, which are 0.06 Å longer than those of the corresponding uranyl(VI) complexes. Consequently, it was found that the v_3 peak at around 770 cm⁻¹ ($\Delta v_3 = 130$ cm⁻¹), similar structure of the equatorial ligands to that of the uranyl(VI) one, and the lengthening of $R_{\rm UO}$ about 0.06 Å from that of the uranyl(VI) one are the common structural properties of the uranyl(V) complexes

Chapter 6. The electronic spectra of three types of pure uranyl(V) complexes, $[U^VO_2-(CO_3)_3]^{5-}$, $[U^VO_2(saloph)DMSO]^-$, and $[U^VO_2(dbm)_2DMSO]^-$ were first measured. As a result, it was clarified that these uranyl(V) complexes have characteristic absorption bands in the visible-NIR region as follows.

- $[U^VO_2(CO_3)_3]^{5-}$: 5560, 6250, 8770, 10100, and 13200 cm⁻¹ ($\epsilon = 0.2-3.6 \text{ M}^{-1} \cdot \text{cm}^{-1}$).
- $[U^{V}O_{2}(saloph)DMSO]^{-}$: 5330, 7140, 11100, 13300, and 15400 cm⁻¹ ($\epsilon = 100-300 \text{ M}^{-1} \cdot \text{cm}^{-1}$).
- [U^VO₂(dbm)₂DMSO]⁻: 5290, 6800, 11600, 13500, and 15600 cm⁻¹ (ε = 150–900 M⁻¹·cm⁻¹).

From the similarities in the electronic spectra, the differences in the ϵ values, and the coordination environments surrounding U⁵⁺ ion, it was proposed that these characteristic absorption bands of the uranyl(V) complexes are due to the f–f transitions in the U^VO₂⁺ core. The absorption bands due to the f-f transition in the uranyl(V) complexes could be classified into two regions, *Region I* (4800–7600 cm⁻¹) and *Region II* (7600–17200 cm⁻¹). From the discussion about the participations of the 5f orbitals in the actinyl bonding, the absorption bands in *Region I* were assigned to the transitions from the $5f(\delta_u \text{ or } \phi_u)$ orbital to other $5f\delta_u$ and/or $5f\phi_u$, and those in *Region II* were attributed to the transitions to the $5f\pi_u$ and $5f\sigma_u$. In a comparison with the electronic spectral data of the isoelectronic neptunyl(VI) species, it was suggested that the absorption band of each uranyl(V) complex at the lowest wavenumber corresponds to the second excited state in the f-f transitions and that the much weaker antibonding characters of the $5f\pi_u$ and $5f\sigma_u$ orbitals in the uranyl(V) complexes may explain their unusual instabilities.

By using the group theory, the splitting scheme of the 5f orbitals, the hybridization of the 5f, 6d and 7s orbitals, and the intensities of the f-f transitions were discussed. In D_{6h} point group corresponding to $[U^VO_2(CO_3)_3]^{5-}$, the energy order of the 5f¹ electronic states were obtained as, E_{2u} $(5f\delta_u^1) \approx B_{2u}$ $(5f\phi_u^1) < B_{1u}$ $(5f\phi_u^1) < E_{1u}$ $(5f\pi_u^1) < A_{2u}$ $(5f\sigma_u^1)$. Here, the splitting of the essentially doubly degenerated $5f\phi_u$ orbitals were observed. In the hybridization of the atomic orbitals of the center uranium in the D_{6h} point group, it was revealed that all 5f orbitals are independent of other 6d and 7s ones. This proposed that the origin of the intensities of the f-f transitions in $[U^VO_2(CO_3)_3]^{5-}$ is due to vibronic coupling. On the other hand, in the D_{5h} point group corresponding to $[U^VO_2(saloph)DMSO]^-$ and $[U^VO_2(dbm)_2-$ DMSO]⁻, the energy order of the 5f¹ electronic states were determined as, E_2'' (5f δ_{μ}^1) < E_2' $(5f\phi_u^1) < E'_1 (5f\pi_u^1) < A''_2 (5f\sigma_u^1)$, and the d-f mixing in the hybridization of the 5f, 6d, and 7s orbitals was predicted. As a result of the estimation for the transition probabilities, it was revealed that only the $E''_2 \to E'_2$ (5f $\delta_u \to 5f\phi_u$) transition polarized in z axis is allowed by the d-f mixing, and that others may borrows their intensities from the vibronic coupling. To examine the spin-orbit effect in 5f¹ system (S = $\frac{1}{2}$), the double groups were also involved in the discussion. Consequently, the energy diagrams including D_{6h} and D_{5h} symmetric ligand field and the spin-orbit effect were proposed for the electronic spectra of $[U^VO_2(CO_3)_3]^{5-}$, $[U^{V}O_{2}(saloph)DMSO]^{-}$, and $[U^{V}O_{2}(dbm)_{2}DMSO]^{-}$.

The properties concerning the molecular structures, electronic spectra, and reactivities of the uranyl(V) and -(VI) complexes are summarized in Table 7.1. In the present study, two systems of stable uranyl(V) complexes other than $[U^VO_2(CO_3)_3]^{5-}$ have been found out. This is the first observation of the pure uranyl(V) species in nonaqueous system. Furthermore, the novel experimental data concerning molecular structure, electronic spectra, and reactivities of the uranyl(V) complexes have been elucidated. These data are the first experimental evidences on the properties of a series of the uranyl(V) species, and the essential information of the actinyl species as described in Chapter 1. Not only for the progress in the basic science of the actinoid elements, such knowledges of the properties of uranyl(V) will be important also for the construction of the basis of technological developments in the nuclear engineering field; the reprocessing process of the spent nuclear fuel and the geological disposal of the high level radioactive wastes. For example, the adjustment of the oxidation states of nuclides (U, Pu, and other fission products) is most essential in both wet- and pyro-reprocessing processes. Moreover, the uranyl(V) species, especially $[U^VO_2(CO_3)_3]^{5-}$, may occur in the geosphere where the reductive atmosphere and carbonate-rich ground water should be presented. In conclusion, it must be noted that such elucidations of the chemistry of uranyl(V)have been established by the observation of the pure uranyl(V) complexes, which had never been achieved in the previous studies.

System	Property	$U(V)(5f^{1})$	U(VI) (5f ⁰)	$E^{\circ'}$ of $U(V)/U(VI)^a$
[U ^{V/VI} O ₂ (CO ₃) ₃] ^{5-/4-}	Molecular Structure: f-f Transition:	$v_1 = 759 \text{ cm}^{-1}$, $R_{UO} = 1.90 \text{ Å}^b$ 5560, 6250, 8770, 10100,	$v_1 = 812 \text{ cm}^{-1}, R_{\text{UO}} = 1.80 \text{ Å}^b$ no f-f transition	-0.751 V νs. Ag/AgCl (-0.529 V νs. SHE) ^c
	CO ^{2–} Excahnge:	$k_{\rm ex}^{298\rm K} = 1.13 \times 10^3 {\rm s}^{-1}$ $\Delta H^{\ddagger} = 62.0 \pm 0.7 {\rm kJ \cdot mol^{-1}}$ $\Delta S^{\ddagger} = 22 \pm 3 {\rm J \cdot mol^{-1} \cdot \rm K^{-1}}$	$k_{ex}^{298K} = 13 \text{ s}^{-1} \text{ d}$ $\Delta H^{\ddagger} = 82 \pm 11 \text{ kJ} \cdot \text{mol}^{-1} \text{ d}$ $\Delta S^{\ddagger} = 50 \pm 30 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \text{ d}$	
[U ^{V/VI} O ₂ (saloph)DMF] ^{-/0}	DMF Dissociation: DMF Exchange:	$K_{ m disV} \approx 5 { m M}$ $k_{ m ex}^{298{ m K}} pprox 10^5 { m s}^{-1}$	$\begin{aligned} & - & - \\ k_{ex}^{298K} &= 1.68 \times 10^3 \text{ s}^{-1} \\ & \Delta H^{\ddagger} &= 19 \pm 1 \text{ kJ} \cdot \text{mol}^{-1} \\ & \Delta S^{\ddagger} &= -118 \pm 4 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \end{aligned}$	-1.626 V <i>vs.</i> Fc/Fc ⁺ (-0.947 V <i>vs.</i> SHE) ^e
[U ^{V/VI} O ₂ (saloph)DMSO] ^{-/0}	Molecular Structure: f-f Transition:	$v_3 = 770 \text{ cm}^{-1}$, $R_{\text{UO}} = 1.84 \text{ Å}$ 5330, 7140, 11100, 13300, 15400 cm^{-1}	$\nu_3 = 895 \text{ cm}^{-1}$, $R_{\text{UO}} = 1.783 \text{ Å}$ no f-f transition	–1.550 V νs. Fc/Fc ⁺ (–0.917 V νs. SHE) ^ε
	DMSO Dissociation: DMSO Exchange:	$M c.0 \approx 0.3 M c.0^{5} k_{ex}^{298K} \approx 10^{5} s^{-1}$	$k_{ex}^{298K} = 1.63 \times 10^{3} \text{ s}^{-1}$ $\Delta H^{\ddagger} = 29.7 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta S^{\ddagger} = -83 \pm 3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
$[U^{V/VI}O_2(dbm)_2 DMSO]^{-/0}$	Molecular Structure: f-f Transition:	$v_3 = 775 \text{ cm}^{-1}, R_{\text{UO}} = 1.84 \text{ Å}$ 5290, 6800, 11600, 13500, 15600 cm ⁻¹	$v_3 = 906 \text{ cm}^{-1}$, $R_{UO} = 1.784 \text{ Å}$ no f-f transition	-1.362 V νs. Fc/Fc ⁺ (-0.729 V νs. SHE) ^e
	DMSO Exchange:	$k_{\rm ex}^{298\rm K} \approx 10^4 \rm s^{-1}$	$k_{\text{ex}}^{298\text{K}} = 6.8 \times 10^2 \text{ s}^{-1}$ $\Delta H^{\ddagger} = 30 \pm 2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta S^{\ddagger} = -88 \pm 5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	
^{<i>a</i>} Formal potential of U(V)/U potential value of Ag/AgCl <i>i</i> the known potential value of acetonitrile, +0.073 V and +(((VI) redox couple. ^b Ref vs. SHE (standard hydro f Ag/Ag ⁺ in acetonitrile 0.119 V, respectively.	sorted data; v_1 : by Madic <i>et al.</i> , ¹⁵ gen electrode), +0.222 V at 298 v_s . SHE, +0.560 V, and the mea	¹⁾ R _{UO} : by Docrat et al. ¹⁵³⁾ cCalcu K. ^d Reported data by Brücher et a asured values of Fc/Fc ⁺ in DMSO	lated by using the known $l'^{71)}$ "Calculated by using and DMF vs. Ag/Ag ⁺ in

Acknowledgment

It is privilege to express my sincere appreciation to **Associate Professor Yasuhisa Ikeda**, who has given me continuous supervising, guidance, and encouragement throughout my graduate research.

I wish to acknowledge gratefully to,

- **Dr. Masayuki Harada** Assistant researcher in our laboratory, for his great help in my research and his skillful assistance.
- **Prof. Ingmar Grenthe** Professor in Kungliga Tekniska Högskolan (KTH, Royal Institute of Technology, Sweden), for helpful discussion especially in the carbonate aqueous system and his kindness in my stay in Stockholm, Sweden from 15th November to 20th December, 2005. I would like to express my special thankfulness to him with my respect.
- **Prof. Satoru Tsushima** Associate professor in Stockholm University, for the useful discussions concerning the electronic spectra and structural properties of the uranyl(V) complexes from a point of theoretical view. I also want to express my special appreciation to his kindness in my stay in Stockholm, Sweden.
- **Prof. Zoltán Szabó** Associate professor in Kungliga Tekniska Högskolan (KTH, Royal Institute of Technology, Sweden), for his kindness especially in my stay in Stockholm, Sweden, and technical assistance to use the NMR and other instruments in KTH.
- **Prof. Toshihiko Hoshi** Emeritus professor in Aoyama Gakuin University, for the helpful education and discussions, and his encouragement since my undergraduate research in Aoyama Gakuin University.
- **Prof. Kunio Shimizu** Emeritus professor in Sophia University, for his kind and helpful advices to prepare the OTTLE cell.
- **Dr. Miki Hasegawa** Lecturer in Aoyama Gakuin University, for the creative discussions and her encouragement since my undergraduate research in Aoyama Gakuin University.
- **Dr. Seong-Yun Kim** Researcher in Japan Atomic Energy Agency, for his technical assistance especially for the electrochemical measurements and the creative discussion on the electrochemical properties of uranyl(VI) complexes.
- **Dr. Takehiko Tsukahara** Assistant researcher in Tokyo University, for his helpful lecture to use the NMR instrument and his heart-warming kindness.

- **Dr. Noriko Asanuma** Lecturer in Tokai University, for her kindness and accurate guidance to my research.
- **Dr. Nobuyoshi Koshino** Researcher in Sumitomo Chemical, for his kindness and useful discussion in my study.
- My colleagues in Ikeda Lab For the useful discussions and their heart-warming guidance, kindness, and friendships.

I would like to thank my family, **Miss Michiko Takao** (mother), **Mr. Yoshihiro Mizuoka** (brother), **Mr. Kenji Takao** (brother), **Mrs. Toshiko Takao** (grandmother), and **Mr. Keiichiro Takao** (grandfather), for their kindness and great supports in all of my student life. Finally, I want to dedicate this doctoral thesis to my beloved woman, **Dr. Shinobu Kishi**.

March, 2006

Koichiro Mizuoka

References

- [1] Katz, J. J.; Seaborg, G. T.; Morss, L. R., *The Chemistry of the Actinide Elements 2nd Edition*, Chapman and Hall, London, New York, **1986**.
- [2] Kaltsoyannis, N.; Scott, P., The f elements, OXFORD University Press Inc., New York, 1999.
- [3] Denning, R. G.; Norris, J. O. W.; Short, I. G.; Snellgrove, T. R.; Woodwark, D. R., "Electronic Structure of Actinyl Ions", *Lanthanide and Actinide Chemistry and Spectroscopy*, **1980**, ACS Symposium Series 131, 313–330.
- [4] Matsika, S.; Zhang, Z.; Brozell, S. R.; Blaudeau, J.-P.; Wang, Q.; Pitzer, R. M., "Electronic Structure and Spectra of Actinyl Ions", J. Phys. Chem. A, 2001, 105, 3825–3828.
- [5] King, R. B., "Some Aspects of Structure and Bonding in Binary and Ternary Uranium(VI) Oxides", *Chem. Mater.*, **2002**, *14*, 3628–3635.
- [6] Crandall, H. W., "The Formula of Uranyl Ion", J. Chem. Phys., 1949, 17, 602-606.
- [7] Adams, D. M., Metal-Ligand and Related Vibrations, Edward Arnold Ltd. London, 1967.
- [8] Jones, L. H., "Determination of U–O Bond Distance in Uranyl Complexes from Thier Infrared Spectra", Spectrochim. Acta, 1959, 15, 409–411.
- [9] Badger, R. M., "The Relation Between the Internuclear Distances and Force Constants of Molecules and Its Application to Polyatomic Molecules", *J. Chem. Phys.*, **1935**, *3*, 710–714.
- [10] McGlynn, S. P.; Smith, J. K.; Neely, W. C., "Electronic Structure, Spectra, and Magnetic Properties of Oxycations. III. Ligation Effects on the Infrared Spectrum of the Uranyl Ion", *J. Chem. Phys.*, **1961**, *35*, 105–116.
- [11] Veal, B. W.; Lam, D. J.; Carnall, W. T.; Hoekstra, H. R., "X-ray Photoemission Spectroscopy Study of Hexavalent Uranium Compoudns", *Phys. Rev.*, 1975, *B12*, 5651–5663.
- [12] Grenthe, I.; Fuger, J.; Konings, R. J. M.; Lemire, R. J.; Muller, A. B.; Hgun-Trung, C.; Wanner, H., *Chemical Thermodynamics of Uranium*, OECD/NEA and North-Holland, Amsterdam, **1992**, 2003 Updated.
- [13] Guillaumont, R.; Fanghänel, T.; Neck, V.; Fuger, J.; Palmer, D. A.; Grenthe, I.; Rand, M. H., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier B. V., Amsterdam, The Netherlands, 2003.
- [14] Alcock, N. W.; Esperås, S., "Crystal and Molecular Structure of Uranyl Diperchlorate Heptahydrate", J. Chem. Soc. Dalton Trans., 1977 893–896.
- [15] Fischer, A., "Competitive Coordination of the Uranyl Ion by Perchlorate and Water The Crystal Structures of UO₂(ClO₄)₂·3H₂O and UO₂(ClO₄)₂·5H₂O and a Redetermination of UO₂(ClO₄)₂·7H₂O", Z. Anorg. Allg. Chem., 2003, 629, 1012–1016.
- [16] Comyns, A. E.; Gatehouse, B. M.; Wait, E., "The Chemistry of Uranyl Acetylacetone Complex", J. Chem. Soc., 1958 4655–4665.
- [17] Sacconi, L.; Caroti, G.; Paoletti, P., "Investigations on the Co-ordination Power of Uranyl. Part III. Infrared Spectra of Some Complexes with β-Diketones", J. Chem. Soc., 1958 4257–4264.
- [18] Haigh, J. M.; Thornton, D. A., "Ligand Substitution Effects in Uranyl β-Ketoenolates", J. Mol. Struct., 1971, 8, 351–361.

- [19] Kannan, S.; Venugopal, V.; Pillai, M. R. A.; Droege, P. A.; Barnes, C. L., "Synthesis and Characterization of Sulphoxide Adducts of Uranyl Bis(β-diketonates): The Crystal and Molecular Structure of [UO₂(DBM)₂·C₆H₅CH₂SOCH₃]", *Polyhedron*, **1996**, *15*, 97–101.
- [20] Kannan, S.; Venugopal, V.; Pillai, M. R. A.; Droege, P. A.; Barnes, C. L.; Schlemper, E. O., "The Dibenzylideneacetone Adducts of Uranyl Bis(β-diketonates). The Low Temperature NMR Behaviour and Molecular Structure of [UO₂(TTA)₂·DBA]", *Polyhedron*, **1996**, *15*, 465–471.
- [21] Kannan, S.; Pillai, M. R. A.; Venugopal, V.; Droege, P. A.; Barnes, C. L., "The Camphor Adducts of Uranyl Bis(β-diketones). The Low Temperature ¹⁹F NMR Behaviour of [UO₂(TTA)₂·camphor] and the Cyrstal Structure of [UO₂(DBM)₂·camphor]", *Inorg. Chim. Acta*, **1997**, *254*, 113–117.
- [22] Kannan, S.; Usman, A.; Fun, H. K., "Synthesis and Characterization of [Bis(β-diketonato)uranium(VI)] Nitrone Compounds. The Crystal and Molecular Structure of [UO₂(TTA)₂·*p*-NO₂-C₅H₄NO]", *Polyhedron*, **2002**, *21*, 2403–2407.
- [23] Pfeiffer, P.; Hesse, T.; Pfitzner, H.; Scholl, W.; Thielert, H., "Innere Komplexsalze der Aldimin- und Azoreihe", J. Prakt. Chem., 1937, 149, 217–296.
- [24] Bandoli, G.; Clemente, D. A.; Croatto, U.; Vidali, M.; vigato, P. A., "Preparation and Crystal and Molecular Structure of [*N*,*N*'-*o*-Phenylenebis(salicylideneiminato)UO₂(EtOH)]", *Chem. Commun.*, **1971** 1330–1331.
- [25] Cattalinin, L.; Degetto, S.; Vidali, M.; Vigato, P. A., "Uranyl Complexes Containing Polydentate Schiff Bases", *Inorg. Chim. Acta*, 1972, 6, 173–176.
- [26] Pasini, A.; Gullotti, M.; Cesarotti, E., "Schiff Base Complexes of Oxocations–I Uranyl Complexes with Tetradentate Optically Active Schiff Bases of Salicylaldehyde", J. Inorg. Nucl. Chem., 1972, 34, 3821– 3833.
- [27] Bandoli, G.; Clemente, D. A.; Croatto, U.; Vidali, M.; Vigato, P. A., "Crystal and Molecular Structure of [N,N'Ethylene-bis(salicylideneiminato)UO₂(MeOH)]", *Inorg. Nucl. Chem. Lett.*, **1972**, *8*, 961–964.
- [28] Bandoli, G.; Cattalini, L.; Clemente, D. A.; Vidali, M.; Vigato, P. A., "Preparation, Properties, and Molecular Structure of Aquoglyoxolbis-(2-hydroxyanil)dioxouranium", J. Chem. Soc., Chem. Commun., 1972 344–345.
- [29] Bandoli, G.; Clemente, D. A.; Croatto, U.; Vidali, M.; Vigato, P. A., "Crystal and Molecular Structure of [N,N'-Ethylenebis(salicylideneiminato)](methanol)dioxouranium", J. Chem. Soc. Dalton, 1973 2331– 2335.
- [30] Cattalini, L.; Vigato, P. A.; Vidali, M.; Degetto, S.; Casellato, U., "The Interaction of 2,2'-Bisbenzoxazoline with Uranyl Ion", J. Inorg. Nucl. Chem., 1975, 37, 1721–1723.
- [31] Bombieri, G.; Forsellini, E.; Benetollo, F.; Fenton, D. E., "Conformational Differences in Dioxouranium(VI) Coordination Compounds Crystal Structure of the Chloroform Adduct of N,N'-Bissalicylidene-1,5-diamino-3-oxapentane-dioxouranium(VI)", J. Inorg. Nucl. Chem., 1979, 41, 1437– 1441.
- [32] Paolucci, G.; Marangoni, G.; Bandoli, G.; Clemente, D. A., "Reactivity of Uranyl Ion with Quinquedentate Chelating Hydrazine Derivatives. Part 2. 2,6-Diacetylpyridine Bis(4-methoxybenzoylhydrazone)", *J. Chem. Soc., Dalton Trans.*, **1980** 1304–1311.
- [33] Rajan, O. A.; Chakravorty, A., "New Uranyl(VI) Complexes: Binding of Mono and Bidentate Ligands to UO₂(tridentate) Species", *Inorg. Chim. Acta*, **1981**, *50*, 79–84.
- [34] Fenton, D. E.; Vigato, P. A.; Casellato, U.; Graziani, R.; Vidali, M., "The Preparation and Crystal Structure of N,N'-bis(salicylidene)-1,5-diamino-3-thiapentane-dioxouranium(VI)", *Inorg. Chim. Acta*, 1981, 51, 195–199.
- [35] Casellato, U.; Guerriero, P.; Tamburini, S.; Vigato, P. A.; Graziani, R., "Synthesis, Properties, and Crystal Structures of New Mono- and Homobinuclear Uranyl(VI) Complexes with Compartmental Schiff Bases", J. Chem. Soc., Dalton Trans., 1990 1533–1541.
- [36] Signorini, O.; Dockal, E. R.; Castellano, G.; Oliva, G., "Synthesis and Characterization of Aquo[N,N'ethylenebis(3-ethoxysalicylideneaminato)]dioxouranium(VI)", *Polyhedron*, 2996, 15, 245–255.

- [37] Evance, D. J.; Junk, P. C.; Smith, M. K., "The Effect of Coordinated Solvent Ligands on the Solid-State Structures of Compounds Involving Uranyl Nitrate and Schiff Bases", *Polyhedron*, 2002, 21, 2421–2431.
- [38] Kannappan, R.; Tanase, S.; Tooke, D. M.; Spek, A. L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J., "Separation of Actinides and Lanthanides: Crystal and Molecular Structures of *N*,*N*'-Bis(3,5-di-*t*-butylsalicylidene)-4,5-dimethyl-1,2-phenylenediamine and Its Uranium Complex", *Polyhedron*, 2004, 23, 2285–2291.
- [39] Gatto, C. C.; Lang, E. S.; Kupfer, A.; Hagenbach, A.; Wille, D.; Abram, U., "Doxouranium Complexes with Acetylpyridine Benzoylhydrazones and Related Ligands", Z. Anor. Allog. Chem., 2004, 630, 735– 741.
- [40] Marks, T. J.; Stojakovic, D. R., "Large Metal Ion-Centered Template Reactions. Chemical and Spectral Studies of the 'Superphthalocyanine' Dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) and Its Derivatives", J. Am. Chem. Soc., 1978, 100, 1695–1705.
- [41] Cuellar, E. A.; Marks, T. J., "Synthesis and Characterization of Metallo and Metal-Free Octaalykylphthalocyanines and Uranyl Decaalkylsuperphthalocyanines", *Inorg. Chem.*, **1981**, *20*, 3766–3770.
- [42] Bauer, V. J.; Clive, D. L. J.; Dolphin, D.; Paine III, J. B.; Harris, F. L.; King, M. M.; Loder, J.; Wang, S.-Y. C.; Woodward, R. B., "Sapphyrins: Novel Aromatic Pentapyrrolic Macrocycles", *J. Am. Chem. Soc.*, 1983, 105, 6429–6436.
- [43] De Cola, L.; Smailes, D. L.; Vallarino, L. M., "Metal-Templated Synthesis of Novel Macrocyclic Complexes of the Uranyl Ion", *Inorg. Chim. Acta*, 1985, 110, L1–L2.
- [44] Van Staveren, C. J.; Van Eerden, J.; Van Veggel, F. C. J. M.; Harkema, S.; Reinhoudt, D. N., "Cocomplexation of Neutral Guests and Electrophilic Metal Cations in Synthetic Macrocyclic Hosts", J. Am. Chem. Soc., 1988, 110, 4994–5008.
- [45] Benetollo, F.; Bombieri, G.; De Cola, L.; Polo, A.; Smailes, D. L.; Vallarino, L. M., "Six-Nitrogen Macrocyclic Complexes of the Dioxouranium(VI) and Praseodymium(III)", *Inorg. Chem.*, **1989**, 28, 3447–3452.
- [46] Sessler, J. L.; Mody, T. D.; Lynch, V., "Synthesis and X-ray Characterization of a Uranyl(VI) Schiff Base Complex Derived from a 2:2 Condensation Product of 3,4-Diethylpyrrole-2,5-dicarbaldehyde and 1,2-Diamino-4,5-dimethoxybenzene", *Inorg. Chem.*, **1992**, *31*, 529–531.
- [47] Sessler, J. L.; Mody, T. D.; Dulay, M. T.; Espinoza, R.; Lynch, V., "The Template synthesis and X-ray Characterization of Pyrrole-Derived Hexadentate Uranyl(VI) Schiff-Base Macrocyclic Complexes", *Inorg. Chim. Acta*, **1996**, *246*, 23–30.
- [48] Casellato, U.; Tamburini, S.; Tomasin, P.; Vigato, P. A., "Uranyl(VI) Complexes with [1+1] Asymmetric Compartmental Ligands Containing a Schiff Base and a Crown Ether-Like Chamber", *Inorg. Chim. Acta*, 2002, 341, 118–126.
- [49] Sessler, J. L.; Callaway, W. B.; Dudek, S. P.; Date, R. W.; Bruce, D. W., "Synthesis and Characterization of a Discotic Uranium-Containing Liquid Crystal", *Inorg. Chem.*, 2004, 43, 6650–6653.
- [50] Benedict, M.; Pigford, T. H.; Levi, H. W., *Nuclear Chemical Engineering, Second Edition*, McGraw-Hill, Inc. United States, **1981**.
- [51] Casellato, U.; Vigato, P. A.; Vidali, M., "Actinide Nitrate Complexes", Cood. Chem. Rev., 1981, 36, 183–265.
- [52] Burns, J. H., "Solvent-Extraction Complexes of the Uranyl Ion. 1. Crystal and Molecular Structure of Bis(nitroato)bis(tri-*n*-butylphosphine oxide)dioxouranium(VI)", *Inorg. Chem.*, **1981**, *20*, 3868–3871.
- [53] Burns, J. H., "Solvent-Extraction Complexes of the Uranyl Ion. 2. Crystal and Molecular Structures of *catena*-Bis(μ-di-n-butyl phosphato-O,O')dioxouranium(VI) and Bis(μ-di-n-butyl phosphato-O,O')bis[(nitrato)(tri-n-butylphosphine oxide)dioxouranium(VI)]", *Inorg. Chem.*, **1983**, 22, 1174–1178.
- [54] Agostini, G.; Giacometti, G.; Clemente, D. A.; Vicentini, M., "Crystal and Molecular Structure of Uranyl Nitrate Trimethylphosphate", *Inorg. Chim. Acta*, 1982, 62, 237–240.

- [55] Burns, J. H.; Brown, G. M.; Ryan, R. R., "Structure of Dinitratodioxobis(triisobutyl phosphate)uranium(VI) at 139 K", Acta Cryst., 1985, C41, 1446–1448.
- [56] Auwer, C. D.; Revel, R.; Charbonnel, M. C.; Presson, M. T.; Conradson, S. D.; Simoni, E.; Du, J. F. L.; Madic, C., "Actinide Coordination Sphere in Various U, Np and Pu Nitrato Cooridnation Complexes", *J. Synchrotron Rad.*, **1999**, *6*, 101–104.
- [57] Varga, T. R.; Sato, M.; Fazekas, Z.; Ikeda, Y.; Tomiyasu, H., "New Uranyl Nitrate Complex with N-Cyclohexyl-2-pyrrolidone: A Promising Candidate for Nuclear Fuel Reprocessing", *Inorg. Chem. Commun.*, 2000, *3*, 637–639.
- [58] Varga, T. R.; Bényei, A. C.; Fazekas, Z.; Tomiyasu, H.; Ikeda, Y., "Molecular and Crystal Structure of Bis(*N*-cyclohexyl-2-pyrrolidone)dioxouranium(VI) Nitrate", *Inorg. Chim. Acta*, 2003, 342, 291–294.
- [59] Koshino, N.; Harada, M.; Morita, Y.; Kikuchi, T.; Ikeda, Y., "Development of a Simple Reprocessing Process Using Selective Precipitant for Uranyl Ions –Fundamental Studies for Evaluating the Precipitant Performance", *Prog. Nucl. Ener.*, 2005, 47, 406–413.
- [60] Brittain, H. G.; Tsao, L.; Perry, D. L., "Photophysical Studies of Uranyl Complexes 5. Luminescence Spectrum of K₄UO₂(CO₃)₃", J. Lumin., **1984**, 29, 285–294.
- [61] Coda, A.; Giusta, A. D.; Tazzoli, V., "The Structure of Synthetic Andersonite, Na₂Ca[UO₂(CO₃)₃]·xH₂O ($x \approx 5.6$)", *Acta Cryst.*, **1981**, *B37*, 1496–1500.
- [62] Mereiter, K., "Structure of Caesium Tricarbonatodioxouranate(VI) Hexahydrate", *Acta Cryst.*, **1988**, *C44*, 1175–1178.
- [63] Gordon, G.; Taube, H., "The Uranium(V)-Catalysed Exchange Reaction between Uranyl Ion and Water in Perchloric Acid Solution", J. Inorg. Nucl. Chem., 1961, 16, 272–278.
- [64] Clark, D. L.; Conradson, S. D.; Donohoe, R. J.; Keogh, D. W.; Morris, D. E.; Palmer, P. D.; Rogers, R. D.; Tait, C. D., "Chemical Speciation of the Uranyl Ion under Highly Alkaline Conditions. Synthesis, Structures, and Oxo Ligand Exchange Dynamics", *Inorg. Chem.*, **1999**, *38*, 1456–1466.
- [65] Lincoln, S. F., "Kinetic Applications of NMR Spectroscopy", Prog. React. Kinetics, 1977, 9, 1–91.
- [66] Fratiello, A.; Kubo, V.; Lee, R. E.; Schuster, R. E., "Direct Proton Magnetic Resonance Cation Hydration Study of Uranyl Perchlorate, Nitrate, Chloride, and Bromide in Water–Acetone Mixtures", J. Phys. Chem., 1970, 74, 3726–3730.
- [67] Fratiello, A.; Kubo, V.; Schuster, R. E., "A Proton Magnetic Resonance Cation Solvation Study of Uranyl Perchlorate, Uranyl Nitrate, and Uranyl Perchlorate-Hydrochloric Acid Solutions in Water–Dimethyl Sulfoxide–Acetone Mixtures", *Inorg. Chem.*, **1971**, *10*, 744–747.
- [68] Ikeda, Y.; Soya, S.; Fukutomi, H.; Tomiyasu, H., "Nuclear Magnetic Resonance Study of the Kinetics of the Water Exchange Process in the Equatorial Positions of Uranyl Complexes", *J. Inorg. Nucl. Chem.*, 1979, 41, 1333–1337.
- [69] Bowen, R. P.; Lincoln, S. F.; Williams, E. H., "Exchange of N,N-Dimethylacetamide on Dioxopentakis(N,N-dimethylacetamide)uranium(VI) Ion. Proton Magnetic Resonance Study", *Inorg. Chem.*, 1976, 15, 2126–2129.
- [70] Crea, J.; Digiusto, R.; Lincoln, S. F.; Williams, E. H., "A Nuclear Magnetic Resonance Study of Ligand Exchange on Dioxopentakis(trimethylphosphate)uranium(VI) Ion and Its Triethyl Phosphate Analogue", *Inorg. Chem.*, **1977**, *16*, 2825–2829.
- [71] Brücher, E.; Glaser, J.; Toth, I., "Carbonate Exchange for the Complex UO₂(CO₃)⁴⁻₃ in Aqueous Solution as Studied by ¹³C NMR Spectroscopy", *Inorg. Chem.*, **1991**, *30*, 2239–2241.
- [72] Bányai, I.; Glaser, J.; Micskei, K.; Tóth, I.; Zékány, L., "Kinetic Behavior of Carbonate Ligands with Different Coordination Modes: Equilibrium Dynamics for Uranyl(2+) Carbonato Complexes in Aqueous Solution. A ¹³C and ¹⁷O NMR Study", *Inorg. Chem.*, **1995**, *34*, 3785–3796.
- [73] Szabó, Z.; Aas, W.; Grenthe, I., "Structure, Isomerism, and Ligand Dynamics in Dioxouranium(VI) Complexes", *Inorg. Chem.*, **1997**, *36*, 5369–5375.

- [74] Szabó, Z.; Grenthe, I., "Mechanisms of Ligand Substitution Reactions in Ternary Dioxouranium(VI) Complexes", *Inorg. Chem.*, **1998**, 37, 6214–6221.
- [75] Bardin, N.; Rubini, P.; Madic, C., "Hydration of Actinyl(VI), MO²⁺_{2aq} (M = U, Np, Pu). An NMR Study", *Radiochim. Acta*, **1998**, 83, 189–194.
- [76] Farkas, I.; Bányai, I.; Szabó, Z.; Wahlgren, U.; Grenthe, I., "Rates and Mechanisms of Water Exchange of UO₂²⁺(aq) and UO₂(oxolate)F(H₂O)₂⁻: A Variable-Temperature ¹⁷O and ¹⁹F NMR Study", *Inorg. Chem.*, **2000**, *39*, 799–805.
- [77] Szabó, Z.; Grenthe, I., "Potentiometric and Multinuclear NMR Study of the Binary and Ternary Uranium(VI)–L–Fluoride Systems, Where L is α-Hydroxycarboxylate or Glycine", *Inorg. Chem.*, 2000, 39, 5036–5043.
- [78] Ikeda, Y.; Tomiyasu, H.; Fukutomi, H., "Kinetics Study of the Exchange of Dimethyl Sulfoxide in Uranyl Pentakis(dimethyl suldoxide) Ion by NMR", *Bull. Res. Lab. Nucl. React. (Tokyo Inst. Technol.)*, 1979, 4, 47–59.
- [79] Kramer, G. M.; E. T. Maas, J., "Fluxionality of Uranyl β-Diketonate-Base Complexes. Behavior of Uranyl Trifluoroacetylacetonate-Dimethyl Sulfoxide", *Inorg. Chem.*, **1981**, 20, 3514–3516.
- [80] Ikeda, Y.; Tomiyasu, H.; Fukutomi, H., "A Nuclear Magnetic Resonance Study of the Kinetics of Ligand-Exchange Reactions in Uranyl Complexes. 4. Intramolecular-Exchange Reaction of Methyl Groups of Acetylacetonate in UO₂(acac)₂L with L= Me₂S=O, Me₂N=COH, Et₂N=COH", *Inorg. Chem.*, **1984**, 23, 1356–1360.
- [81] Ikeda, Y.; Tomiyasu, H.; Fukutomi, H., "Nuclear Magnetic Resonance Study of the Kinetics of Ligand-Exchange Reactions in Uranyl Complexes. 5. Exchange Reaction of Acetylacetonate in Bis(acetylacetonato)(dimethyl sulfoxide)dioxouranium(VI)", *Inorg. Chem.*, **1984**, 23, 3197–3202.
- [82] Glavincevski, B.; Brownstein, S., "Structure and Exchange of Ionic Adducts of Uranyl Bis(hexafluoroacetylacetonate)", *Inorg. Chem.*, 1983, 22, 221–224.
- [83] Vallet, V.; Privalov, T.; Wahlgren, U.; Grenthe, I., "The Mechanism of Water Exchange in AmO₂(H₂O)²⁺ and in the Isoelectronic UO₂(H₂O)⁺ and NpO₂(H₂O)²⁺ Complexes as Studied by Quantum Chemical Methods", J. Am. Chem. Soc., 2004, 126, 7766–7767.
- [84] McGlynn, S. P.; Smith, J. K., "The Electronic Structure, Spectra, and Magnetic Properties of Actinyl Ions. Part I. The Uranyl Ion", J. Mol. Spectrosc., 1961, 6, 164–187.
- [85] Eisenstein, J. C.; Pryce, M. H. L., "The Electronic Structure and Magnetic Properties of Uranyl-like Ions I. Uranyl and Neptunyl", *Proc. Royal Soc. London, Series A*, 1955, 229, 20–38.
- [86] Eisenstein, J. C.; Pryce, M. H. L., "The Electronic Structure and Magnetic Properties of Uranyl-like Ions II. Plutonyl", *Proc. Royal Soc. London, Series A*, **1956**, 238, 31–45.
- [87] Eisenstein, J. C.; Pryce, M. H. L., "Electronic Structure and Magnetic Properties of the Neptunyl Ion", J. Res. Nat. Bur. Stand., 1965, 69A, 217–235.
- [88] Eisenstein, J. C.; Pryce, M. H. L., "Interpretation of the Solution Absorption Spectra of the (PuO₂)⁺⁺ and (NpO₂)⁺ Ions", J. Res. Nat. Bur. Stand., **1966**, 70A, 165–173.
- [89] McGlynn, S. P.; Smith, J. K., "The Electronic Structure, Spectra, and Magnetic Properties of Actinyl Ions. Part II. Neptunyl, and the Ground States of Other Actinyls", J. Mol. Spectrosc., 1961, 6, 188–198.
- [90] Bell, J. T.; Biggers, R. E., "The Absorption Spectrum of the Uranyl Ion in Perchlorate Media. Part I. Mathematical Resolution of the Overlapping Band Structure and Studies of the Environmental Effects", *J. Mol. Spectrosc.*, **1965**, *18*, 247–275.
- [91] Bell, J. T.; Biggers, R. E., "The Absorption Spectrum of the Uranyl Ion in Perchlorate Media. Part II. The Effects of Hydrolysis on the Resolved Spectral Bands", J. Mol. Spectrosc., 1967, 22, 262–271.
- [92] Bell, J. T.; Biggers, R. E., "Absorption Spectrum of the Uranyl Ion in Perchlorate Media III. Resolution of the Ultraviolet Band Structure; Some Conclusions Concerning the Excited State of UO₂²⁺", *J. Mol. Spectrosc.*, **1968**, *25*, 312–329.

- [93] Bell, J. T., "Continuities in the Spectra and Structure of the Actinyl Ions", J. Inorg. Nucl. Chem., **1969**, 31, 703–710.
- [94] Görller-Walrand, C.; Vanquickenborne, L. G., "Identification of the Lower Transitions in the Spectra of Uranyl Complexes", *J. Chem. Phys.*, **1971**, *54*, 4178–4186.
- [95] Görller-Walrand, C.; De Jaegere, S., "Correlation between the Vibronic Spectra of the Uranyl Ion and the Geometry of Its Coordination", *Spectrochim. Acta*, **1972**, *28A*, 257–268.
- [96] Görller-Walrand, C.; Vanquickenborne, L. G., "On the Coupling Scheme in Uranyl Complexes", J. Chem. Phys., **1972**, 57, 1436–1440.
- [97] Denning, R. G.; Snellgrove, T. R.; Woodwark, D. R., "The Electronic Structure of the Uranyl Ion Part I. The Electronic Spectrum of Cs₂UO₂Cl₄", *Mol. Phys.*, **1976**, *32*, 419–442.
- [98] Denning, R. G.; Foster, D. N. P.; Snellgrove, T. R.; Woodwark, D. R., "The Electronic Structure of the Uranyl Ion II. The Electronic Spectra of CsUO₂(NO₃)₃ and NaUO₂(CH₃COO)₃", *Mol. Phys.*, **1979**, *37*, 1089–1107.
- [99] Denning, R. G.; Snellogrove, T. R.; Woodwark, D. R., "The Electronic Structure of the Uranyl Ion III. Theory", *Mol. Phys.*, **1979**, *37*, 1109–1143.
- [100] Denning, R. G.; Short, I. G.; Woodwark, D. R., "The Electronic Structure of the Uranyl Ion IV. Nitrogen-15 Isotope Shifts in the Electronic Spectrum of CsUO₂(NO₃)₃", *Mol. Phys.*, **1980**, *39*, 1281–1285.
- [101] Denning, R. G.; Norris, J. O. W.; Brown, D., "The Electronic Structure of Actinyl Ions V. *f*-*f* Transitions in [NpO₂Cl₄]⁻ and [NpO₂(NO₃)₂]⁻", *Mol. Phys.*, **1982**, *46*, 287–323.
- [102] Denning, R. G.; Norris, J. O. W.; Brown, D., "The Electronic Structure of Actinyl Ions VI. Charge Transfer Transitions in Cs₂NpO₂Cl₄ and CsNpO₂(NO₃)₃", *Mol. Phys.*, **1982**, *46*, 325–364.
- [103] Denning, R. G.; Morrison, I. D., "The Electronic Structure of Actinyl Ions: the Excited-State Absorption Spectrum of Cs₂UO₂Cl₄", *Chem. Phys. Lett.*, **1991**, *180*, 101–104.
- [104] Hirata, M.; Monjyushiro, H.; Sekine, R.; Onoe, J.; Nkamatsu, H.; Mukoyama, T.; Adachi, H.; Tkeuchi, K., "Valence Electronic Structure of Uranyl Nitrate UO₂(NO₃)₂·2H₂O", *J. Electr. Spectrosc. Relat.Phenom.*, **1997**, *83*, 59–64.
- [105] De Jong, W. A.; Visscher, L.; Nieuwpoort, W. C., "On the Bonding and the Electric Field Gradient of the Uranyl Ion", J. Mol. Struct. (Theochem), 1999, 458, 41–52.
- [106] Zhang, Z.; Pitzer, R. M., "Application of Relativistic Quantum Chemistry to the Electronic Energy Levels of the Uranyl Ion", J. Phys. Chem. A, 1999, 103, 6880–6886.
- [107] Matsika, S.; Pitzer, R. M., "Electronic Spectrum of the NpO₂²⁺ and NpO₂⁺ Ions", J. Phys. chem. A, 2000, 104, 4064–4068.
- [108] Hay, P. J.; Martin, R. L.; Schreckenbach, G., "Theoretical Studies of the Properties and Solution Chemistry of AnO₂²⁺ and AnO₂⁺ Aquo Complexes for An = U, Np, and Pu", J. Phys. Chem. A, 2000, 104, 6259–6270.
- [109] Matsika, S.; Pitzer, R. M.; Reed, D. T., "Intensities in the Spectra of Actinyl Ions", J. Phys. Chem. A, 2000, 104, 11983–11992.
- [110] Gagliardi, L.; Grenthe, I.; Roos, B. O., "A Theoretical Study of the Structure of Tricarbonatodioxouranate", *Inorg. Chem.*, 2001, 40, 2976–2978.
- [111] Matsika, S.; Pitzer, R. M., "Actinyl Ions in Cs₂UO₂Cl₄", J. Phys. Chem. A, 2001, 105, 637–645.
- [112] Gagliardi, L.; Roos, B. O.; Malmqvist, P.-Å.; Dyke, J. M., "On the Electronic Structure of the UO₂ Molecule", *J. Phys. Chem. A*, **2001**, *105*, 10602–10606.
- [113] Gagliardi, L.; Roos, B. O., "Coordination of the Neptunyl Ion with Carbonate Ions and Water: A Theoretical Study", *Inorg. Chem.*, 2002, 41, 1315–1319.
- [114] Vázquez, J.; Bo, C.; Poblet, J. M.; De Pablo, J.; Bruno, J., "DFT Studies of Urany Acetate, Carbonate, and Malonate, Complexes in Solution", *Inorg. Chem.*, 2003, 42, 6136–6141.

- [115] Majumdar, D.; Roszak, S.; Balasubramanian, K.; Nitsche, H., "Theoretical Study of Aqueous Uranyl Carbonate (UO₂CO₃) and Its Hydrated Complexes: UO₂CO₃ \cdot *n*H₂O (*n* = 1 3)", *Chem. Phys. Lett.*, **2003**, *372*, 232–241.
- [116] Bühl, M.; Diss, R.; Wipff, G., "Coordination Environment of Aqueous Uranyl(VI) Ion", J. Am. Chem. Soc., 2005, 127, 13506–13507.
- [117] Mizuoka, K.; Ikeda, Y., "Structural Study on Uranyl Ion in 1-Butyl-3-methylimidazolium Nonafluorobutanesulfonate Ionic Liquid", Prog. Nucl. Ener., 2005, 47, 426–433.
- [118] Kraus, K. A.; Nelson, F.; Johnson, G. L., "Chemistry of Aqueous Uranium(V) Solutions. I. Preparation and Properties. Analogy between Uranium(V), Neptunium(V) and Plutonium(V)", J. Am. Chem. Soc., 1949, 71, 2510–2517.
- [119] Kraus, K. A.; Nelson, F., "Chemistry of Aqueous Uranium(V) Solutions. II. Reaction of Uranium Pentachloride with Water. Thermodynamic Stability of UO₂⁺. Potential of U(IV)/(V), U(IV)/(VI) and U(V)/(VI) Couples", J. Am. Chem. Soc., **1949**, 71, 2517–2522.
- [120] Heal, H. G., "Some Observations on the Electrochemistry of Uranium", *Trans. Faraday Soc.*, **1949**, *45*, 1–11.
- [121] Heal, H. G.; Thomas, J. G. N., "Unstable Ions of Quiquavalent Uranium", *Trans. Faraday Soc.*, 1949, 45, 11–20.
- [122] Newton, T. W.; Baker, F. B., "A Uranium(V)-Uranium(VI) Complex and Its Effect on the Uranium(V) Disproportionation Rate", *Inorg. Chem.*, **1965**, *4*, 1166–1170.
- [123] Ekstrom, A., "Kinetics and Mechanism of the Disproportionation of Uranium(V)", *Inorg. Chem.*, **1974**, *13*, 2237–2241.
- [124] McDuffie, B.; Reilley, C. N., "Twin-Electrode Thin-Layer Electrochemistry. Kinetics of Second-Order Disproportionation of Uranium(V) by Decay of Steady-State Current", Anal. Chem., 1966, 38, 1881– 1887.
- [125] Selbin, J.; Ortego, J. D., "The Chemistry of Uranium(V)", Chem. Rev., 1969, 69, 657-671.
- [126] Sipos, L.; Jeftić, L.; Branica, M.; Galus, Z., "Electrochemical Redox Mechanism of Uranium in Acidic Perchlorate Solutions", J. Electroanal. Chem., 1971, 32, 35–47.
- [127] Bell, J. T.; Fredman, H. A.; Billings, M. R., "Spectrophotometric Studies of Dioxouranium(V) in Aqueous Media–I", J. Inorg. Nucl. Chem., 1974, 36, 2561–2567.
- [128] Howes, K. R.; Bakac, A.; Espenson, J. H., "Electoron-Transfer Reactions of Uranium(V): Kinetics of the Uranium(V)-Uranium(VI) Self-Exchange Reaction", *Inorg. Chem.*, **1988**, 27, 791–794.
- [129] Gritzner, G.; Selbin, J., "Studies of Dioxouranium(V) in Dimethylsulphoxide", J. Inorg. Nucl. Chem., 1968, 30, 1799–1804.
- [130] Folcher, G.; Lambard, J.; De Villardi, G. C., "Photoreduction of UO₂(18-Crown-6)(ClO₄)₂. Synthesis of a U^V Crown-ether Complex", *Inorg. Chim. Acta*, **1980**, 45, L59–L61.
- [131] Miyake, C.; Yamana, Y.; Imoto, S., "Direct Evidence of Uranium(V) Intermediates by Electron Spin Resonance in Photo- and Electrolytic Reduction Processes of Uranyl Complexes in Organic Solutions", *Inorg. Chim. Acta*, **1984**, 95, 17–21.
- [132] Miyake, C.; Kondo, T.; Imoto, S., "Direct Evidence of Uranium(V) Intermediates by Electron Spin Resonance in Photo- and Electrolytic Reduction Processes of Uranyl Complexes in Organic Solutions", *J. Less-Common Met.*, **1986**, *122*, 313–317.
- [133] Fukutomi, H.; Harazono, T., "Photolytic Formation of a Uranium(V)-DMSO Complex and the Paramagnetic Shift of DMSO by Uranium(V)", *Bull. Chem. Soc.Jpn.*, **1986**, *59*, 3678–3680.
- [134] Monjushiro, H.; Hara, H.; Yokoyama, Y., "Identification of Uranium(V) in Photoreduced Uranyl Compounds by Photoacoustic Spectroscopy", *Polyhedron*, 1992, 11, 845–846.
- [135] Anderson, C. J.; Choppin, G. R.; Pruett, D. J.; Costa, D.; Smith, W., "Electrochemistry and Spectroscopy of UO₂²⁺ in Acidic AlCl₃-EMIC", *Radiochim. Acta*, **1999**, 84, 31–36.

- [136] Kaneki, H.; Fukutomi, H., "Spectrophotometric Studies of Uranium(V) in Acidic Perchlorate Solutions", Bull. Res. Lab. Nucl. React. (Tokyo Institute of Technology), 1980, 5, 27–39.
- [137] Zanello, P.; Cinquantini, A.; Mazzocchin, G. A., "Electrochemical Behaviour of Uranyl(VI) Ion in Different Non-Aqueous Solvents", J. Electroanal. Chem., 1982, 131, 215–227.
- [138] Harazono, T.; Fukutomi, H., "Paramagnetic Shifts of DMF and DMA by Uranium(V)", Bull. Chem. Soc. Jpn., 1986, 59, 2129–2133.
- [139] Sandhu, S. S.; Singh, R. J.; Chawla, S. K., "Uranium(V) as an Intermediate in the Photochemical Reduction of the Uranyl Ion with Dicyclohexylsulphide", J. Photochem. Photobio. A, 1990, 52, 65–68.
- [140] Lee, S.-H.; Mizuguchi, K.; Tomiyasu, H.; Ikeda, Y., "Electrochemical and Spectroelectrochemical Studies on Bis(acetylacetonato)(dimethyl sulfoxide)dioxouranium(VI) in Dimethyl Sulfoxide", J. Nucl. Sci. Technol., 1996, 33, 190–192.
- [141] Mizuguchi, K.; Lee, S.-H.; Ikeda, Y.; Tomiyasu, H., "Electrochemical Studies on Bis(β-diketonato)-(dimethyl sulfoxide)dioxouranium(VI) in Dimethyl Sulfoxide", J. Alloys Compd., 1998, 271-273, 163– 167.
- [142] Kim, S.-Y.; Tomiyasu, H.; Ikeda, Y., "Electrochemical Studies on $[UO_2(DMF)_5](CIO_4)_2$, $UO_2(acac)_2DMF$, and $UO_2(salen)DMF$ (DMF = *N*,*N*-Dimethylformaminde, acac = Acetylacetonate, salen = *N*,*N*'-Disalicylideneethylenediaminate) Complexes in DMF", *J. Nucl. Sci. Technol.*, **2002**, *39*, 160–165.
- [143] Kim, S.-Y.; Asakura, T.; Morita, Y.; Ikeda, Y., "Electrochemical Properties of Uranium(VI) Complexes with Multidentate Ligands in *N*,*N*-Dimethylformamide", *J. Alloy. Compd.*, 2005, in press.
- [144] Adams, M. D.; Wenz, D. A.; Steunenberg, R. K., "Observation of a Uranium(V) Species in Molten Chloride Salt Solutions", J. Phys. Chem., 1963, 67, 1939–1941.
- [145] Khokhryakov, A. A., "Electronic Absorption Spectra of Uranyl-containing Molten Halides", *Radio-chemistry*, 1998, 40, 413–415.
- [146] Yamamura, T.; Shiokawa, Y.; Ikeda, Y.; Tomiyasu, H., "Electrochemical Investigation of Tetravalent Uranium β-Diketones for Active Materials of All-Uranium Redox Flow Battery", J. Nucl. Sci. Technol., 2002, Supplement 3, 445–448.
- [147] Cohen, D. D., "The Preparation and Spectrum of Uranium(V) Ions in Aqueous Solutions", J. Inorg. Nucl. Chem., 1970, 32, 3525–3530.
- [148] Wester, D. W.; Sullivan, J. C., "Electrochemical and Spectroscopic Studies of Uranium(IV), -(V), and -(VI) in Carbonate-Bicarbonate Buffers", *Inorg. Chem.*, **1980**, *19*, 2838–2840.
- [149] Ferri, D.; Grenthe, I.; Salvatore, F., "Studies on Metal Carbonate Equilibria. 7. Reduction of the Tris(carbonato)dioxouranate(VI) Ion, $UO_2(CO_3)_3^{4-}$, in Carbonate Solutions", *Inorg. Chem.*, **1983**, *22*, 3162–3165.
- [150] Morris, D. E., "Redox Energetics and Kinetics of Uranyl Coordination Complexes in Aqueous Solution", *Inorg. Chem.*, 2002, 41, 3542–3547.
- [151] Madic, C.; Hobart, D. E.; Begun, G. M., "Raman Spectrometric Studies of Actinide(V) and -(VI) Complexes in Aqueous Sodium Carbonate Solution and of Solid Sodium Actinide(V) Carbonate Compounds", *Inorg. Chem.*, **1983**, *22*, 1494–1503.
- [152] Mizuguchi, K.; Park, Y.-Y.; Tomiyasu, H.; Ikeda, Y., "Electrochemical and Spectroelectrochemical Studies on Uranyl Carbonato and Aqua Complexes", J. Nucl. Sci. Technol., 1993, 30, 542–548.
- [153] Docrat, T. I.; Mosselmans, J. F. W.; Charnock, J. M.; Whiteley, M. W.; Collison, D.; Livens, F. R.; Jones, C.; Edmiston, M. J., "X-ray Absorption Spectroscopy of Tricarbonatodioxouranate(V), [UO₂(CO₃)₃]⁵⁻, in Aqueous Solution", *Inorg. Chem.*, **1999**, *38*, 1879–1882.
- [154] Nelson, F.; Kraus, K. A., "Chemistry of Aqueous Uranium(V) Solutions. III. The Uranium(IV)–(V)–(VI) Equilibrium in Perchlorate and Chloride Solutions", J. Am. Chem. Soc., 1951, 73, 2157–2161.
- [155] Jones, L. H.; Penneman, R. A., "Infrared Spectra and Structure of Uranyl and Transuranium (V) and (VI) Ions in Aqueous Perchloric Acid Solution", J. Chem. Phys., 1953, 21, 542–544.

- [156] Sjoblom, R.; Hindman, J. C., "Spectrophotometry of Neptunium in Perchloric Acid Solutions", J. Am. Chem. Soc., 1951, 73, 1744–1751.
- [157] Waggener, W. C., "Measurement of the Absorption Spectra of Neptunium Ions in Heavy Water Solution from 0.35 to1.85 μ", J. Phys. Chem., 1958, 62, 382–383.
- [158] Hagan, P. G.; Cleveland, J. M., "The Absorption Spectra of Neptunium Ions in Perchloric Acid Solution", J. Inorg. Nucl. Chem., 1966, 28, 2905–2909.
- [159] Friedman, H. A.; Toth, L. M., "Absorption spectra of Np(III), (IV), (V), (VI) in Nitric Acid Solution", J. Inorg. Nucl. Chem., 1980, 42, 1347–1349.
- [160] Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, Inc., New York, London, 1963.
- [161] Allen, P. G.; Bucher, J. J.; Clark, D. L.; Edelstein, N. M.; Ekberg, S. A.; Gohdes, J. W.; Hudson, E. A.; Kaltsoyannis, N.; Lukens, W. W.; Neu, M. P.; Palmer, P. D.; Reich, T.; Shuh, D. K.; Tait, C. D.; Zwick, B. D., "Multinulcear NMR, Raman, EXAFS, and X-ray Diffraction Studies of Uranyl Carbonate Complexes in Near-Neutral Aqueous Solution. X-ray Structure of [C(NH₂)₃]₆[(UO₂)₃(CO₃)₆]·6.5H₂O", *Inorg. Chem.*, **1995**, *34*, 4797–4807.
- [162] Strom, E. T.; Woessner, D. E., "¹³C NMR Spectra of the Uranyl Tricarbonate–bicarbonate System", J. Am. Chem. Soc., 1981, 103, 1255–1256.
- [163] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A., "Completion and Refinement of Crystal Structures with SIR 92", J. Appl. Cryst., 1993, 26, 343–350.
- [164] Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C., <u>PATTY</u>, (1992). The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- [165] Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Gelder, de R.; Israel, R.; Smits, J. M. M., <u>DIRDIF99</u>, (1999). the DIRDIF-99 program system, Tehcnical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- [166] Sheldrick, G. M., <u>SHELXL-97</u>, (1997). Program for Crystal Structure Refinement; University of Göttingen, Germany.
- [167] Cromer, D. T.; Waber, J. T., International Tables for X-ray Crystallography, Vol. IV, The Kynoch Press, Birmingham, England, 1974, Table 2.2 A.
- [168] Ibers, J. A.; Hamilton, J. T., Acta Crystallogr., 1964, 17, 781.
- [169] Creagh, D. C.; McAuley, W. J., International Tables for Crystallogryphy, Vol. C, (A. J. C. Wilson, ed), Kluwer Academic Publishers, Boston, 1992, pp.219-222, Table 4.2.6.8.
- [170] Creagh, D. C.; Hubbell, J. H., International Tables for Crystallogryphy, Vol. C, (A. J. C. Wilson, ed), Kluwer Academic Publishers, Boston, 1992, pp.200-206, Table 4.2.4.3.
- [171] CrystalStructure 3.10, Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2002).
- [172] Thornback, J. R.; Wilkinson, G., "Schiff-Base Complexes of Ruthenium(II)", J. Chem. Soc., Dalton, 1978 110–115.
- [173] Suresh, E.; Bhadbhade, M. M.; Srinivas, D., "Molecular Association, Chelate Conformation and Reactivity Correlations in Substituted *o*-Phenylenebis(salicylidenaminato)copper(II) Complexes: UV-visible, EPR and X-ray Structural Investigations", *Polyhedron*, **1996**, *15*, 4133–4144.
- [174] Zhang, K.-L.; Xu, Y.; Zheng, C.-G.; Zhang, Y.; Wang, Z.; You, X.-Z., "A Linear Polymer Manganese(III) Complex; Syntesis, Crystal and Molecular Structure and Magnetic Properties of Catena-μ-acetato[N,N'-O-phenylenebis(salicylidenaminato)]manganese(III)", *Inorg. Chim. Acta*, **2001**, *318*, 61–66.
- [175] Cort, A. D.; Mandolini, L.; Palmieri, G.; Pasquini, C.; Schiaffino, L., "Unprecedented Detection of Inherent Chirality in Uranyl-salophen Complexes", *Chem. Commun.*, 2003 2178–2179.
- [176] gNMR Ver. 5.0.4.0, Adept Scientific Inc. USA.

- [177] Binsch, G., "A Unified Theory of Exchange Effects on Nuclear Magnetic Resonance Line Shapes", J. Am. Chem. Soc., 1969, 91, 1304–1309.
- [178] DeAngelis, T. P.; Heineman, W. R., "An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode", J. Chem. Edu., 1976, 53, 594–597.
- [179] Heineman, W. R., "Spectroelectrochemistry The Combination of Optical and Electrochemical Techniques", J. Chem. Edu., 1983, 60, 305–308.
- [180] Lin, X. Q.; Kadish, K. M., "Vacuum-Tight Thin-Layer Spectroelectrochemical Cell with a Doublet Platinum Gauze Working Electrode", Anal. Chem., 1985, 57, 1498–1501.
- [181] Endo, A.; Mochida, I.; Shimizu, K.; Satô, G. P., "A Simple Thin-Layer Spectroelectrochemical Cell for Nonaqueous Solution Systems", Anal. Sci., 1995, 11, 457–459.
- [182] Swift, T. J.; Connick, R. E., "NMR-Relaxation Mechanisms of O¹⁷ in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere", J. Chem. Phys., 1962, 37, 307–320.
- [183] Stengle, T. R.; Langford, C. H., "The Uses of Nuclear Magnetic Resonance in the Study of Ligand Substitution Processes", *Cood. Chem. Rev.*, 1967, 2, 349–370.
- [184] J. E. Letter, J.; Jordan, R. B., "Nuclear Magnetic Resonance Line Broadening by a Tridendate Schiff-Base Complex of Nickel(II), Triaquotribenzo[*b*,*f*,*j*][1,5,9]triazacylododecinenickel(II)", *J. Am. Chem. Soc.*, **1971**, *93*, 864–867.
- [185] Rusnak, L.; Jordan, R. B., "Solvent-Exchange Rates from Manganese(III) Protoporphyrin IX Dimethyl Ester Studied by Nuclear Magnetic Resonance Line Broadening", *Inorg. Chem.*, **1972**, *11*, 196–199.
- [186] Clark, D. L.; Hobart, D. E.; Neu, M. P., "Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry", *Chem. Rev.*, **1995**, *95*, 25–48.
- [187] Vallet, V.; Wahlgren, U.; Schimmelpfennig, B.; Szabó, Z.; Grenthe, I., "The Mechanism for Water Exchange in [UO₂(H₂O)₅]²⁺ and [UO₂(oxalate)₂(H₂O)]²⁻, as Studied by Quantum Chemical Methods", *J. Am. Chem. Soc.*, **2001**, *123*, 11999–12008.
- [188] Gritzner, G.; Kůta, J., "Recommendations on Reporting Electrode Potentials in Nonaqueous Solvents", *Pure Appl. Chem.*, **1984**, 56, 461–466.
- [189] Nicholson, R. S., "Semiempirical Procedure for Measuring with Stationary Electrode Polarography Rates of Chemical Reactions Involving the Product of Electron Transfer", *Anal. Chem.*, 1966, 38, 1406.
- [190] Nicholson, R. S., "Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics", Anal. Chem., 1965, 37, 1351–1355.
- [191] Heinze, J., "Cyclic Voltammetry–Electrochemical Spectroscopy", Angew. Chem. Int. Ed., 1984, 23, 931–947.
- [192] Bard, A. J.; Faulkner, L. R., Electrochemical Methods. Fundamentals and Applications Second Edition, John Wiley & Sons, Inc., 2001.
- [193] Nicholson, R. S.; Shain, I., "Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems", *Anal. Chem.*, **1964**, *36*, 706–723.
- [194] Berthet, J.-C.; Nierlich, M.; Ephritikhine, M., "Isolation of a Uranyl [UO₂]⁺ Species: Crystallographic Comparison of the Dioxouranium(V) and (VI) Compounds [UO₂(OPPh₃)₄](TfO)_n", Angew. Chem. Int. Ed., 2003, 42, 1952–1954.
- [195] Figgis, B. N.; Hitchman, M. A., *Ligand Field Theory and Its Applications*, Wiley-VCH, New York, 2000.
- [196] Cotton, F. A., Chemical Applications of Group Theory 2nd Edition, John Wiley & Sons, Inc., 1971, Japanese-translated version by Nakahara, K.
- [197] Griffith, J. S., The Theory of Transition-Metal Ions, Cambridge University Press, 1971.

Appendix A

Crystallographic Information of U^{VI}O₂(saloph)DMF·CH₂Cl₂

data_phdf

SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? _chemical_name_common ? _chemical_melting_point 'C23 H21 N3 O5 U, C H2 Cl2' _chemical_formula_moiety _chemical_formula_sum 'C24 H23 Cl2 N3 O5 U' _chemical_formula_weight 742.38 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 0.0033 'N' 'N' 0.0061 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'U' 'U' -9.6767 9.6646 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic 'P 21/n' _symmetry_space_group_name_H-M _symmetry_Int_Tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z'

```
'-x+1/2, y+1/2, -z+1/2'
 '-x, -y, -z'
 'x-1/2, -y-1/2, z-1/2'
_cell_length_a
                                    10.667(4)
_cell_length_b
                                    9.608(3)
_cell_length_c
                                    24.859(10)
_cell_angle_alpha
                                    90.00
_cell_angle_beta
                                    100.65(3)
_cell_angle_gamma
                                    90.00
_cell_volume
                                    2503.9(16)
_cell_formula_units_Z
                                    4
                                    123(2)
_cell_measurement_temperature
_cell_measurement_reflns_used
                                    26142
_cell_measurement_theta_max
                                    27.5
_exptl_crystal_description
                                   'block'
_exptl_crystal_colour
                                    'orange'
_exptl_crystal_size_max
                                    0.30
_exptl_crystal_size_mid
                                    0.30
_exptl_crystal_size_min
                                    0.30
_exptl_crystal_density_meas
                                    ?
_exptl_crystal_density_diffrn
                                    1.969
_exptl_crystal_density_method
                                     'not measured'
_exptl_crystal_F_000
                                    1416
_exptl_absorpt_coefficient_mu
                                    6.736
                                    numerical
_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min
                                    0.2371
_exptl_absorpt_correction_T_max
                                    0.2371
_exptl_absorpt_process_details
;
    Higashi, T. (1999). Program for Absorption Correction.
    Rigaku Corporation, Tokyo, Japan.
_exptl_special_details
;
?
;
_diffrn_ambient_temperature
                                    123(2)
_diffrn_radiation_wavelength
                                    0.71075
_diffrn_radiation_type
                                    MoK¥a
_diffrn_radiation_source
                                     'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                    graphite
_diffrn_measurement_device_type
                                         'Rigaku RAXIS-RAPID'
_diffrn_measurement_method
                                          ¥₩
_diffrn_detector_area_resol_mean
                                    10.00
_diffrn_reflns_number
                                    23518
_diffrn_reflns_av_R_equivalents
                                    0.0402
_diffrn_reflns_av_sigmaI/netI
                                    0.0245
_diffrn_reflns_limit_h_min
                                    -13
_diffrn_reflns_limit_h_max
                                    13
_diffrn_reflns_limit_k_min
                                    -12
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_l_min
_diffrn_reflns_limit_l_max
                                    12
                                    -27
                                    32
_diffrn_reflns_theta_min
                                    3.09
_diffrn_reflns_theta_max
                                    27.48
_reflns_number_total
                                    5734
_reflns_number_gt
                                    5274
_reflns_threshold_expression
                                    >2sigma(I)
```

_computing_data_collection 'PROCESS-AUTO' 'PROCESS-AUTO' _computing_cell_refinement 'CrystalStructure' _computing_data_reduction _computing_structure_solution 'SIR92' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. _refine_ls_structure_factor_coef Fsqd full _refine_ls_matrix_type _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[¥s²2^(Fo²2)+(0.0262P)²+5.3741P] where P=(Fo²+2Fc²)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00272(11)_refine_ls_extinction_expression
'Fc^*^=kFc[1+0.001xFc^2^¥l^3^/sin(2¥q)]^-1/4^' _refine_ls_number_reflns 5734 _refine_ls_number_parameters 317 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0291 _refine_ls_R_factor_gt 0.0258 _refine_ls_wR_factor_ref 0.0650 _refine_ls_wR_factor_gt 0.0633 _refine_ls_goodness_of_fit_ref 1.119 _refine_ls_restrained_S_all 1.119 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group U1 U 0.042272(11) -0.240763(11) 0.640916(5) 0.02047(6) Uani 1 1 d . . . Cl2 Cl 0.32100(14) -0.03499(11) 0.51214(5) 0.0549(3) Uani 1 1 d . . Cl3 Cl 0.37658(15) 0.25791(11) 0.52559(6) 0.0528(3) Uani 1 1 d . . . 01 0 0.1377(2) -0.3464(2) 0.69108(10) 0.0254(5) Uani 1 1 d . . .

02 0 -0.0507(2) -0.1264(3) 0.59254(10) 0.0278(5) Uani 1 1 d
03 0 -0.0465(3) -0.4419(3) 0.58972(12) 0.0361(6) Uani 1 1 d
04 0 - 0 1270(2) - 0 2799(3) 0 68169(11) 0 0284(5) Uani 1 1 d
05 0 0 1820(2) -0 2830(3) 0 58392(11) 0 0261(5) Uani 1 1 d
$M_1 = 0.04/2(2) = 0.655(3) = 0.655(12) = 0.201(3) = 0.00(7) = 0.010(100) = 0.000(7) = $
$N_1 N = 0.0442(5) = 0.0036(5) 0.30103(13) 0.0239(7) 0.011 1 1 0$
NZ N (0.0350(3) - 0.0607(3) (0.1157(112) (0.0209(5)) Uari 1 1 d
N3 N $0.2223(3) - 0.0641(3) 0.65/81(11) 0.0210(5) Uani 1 1 d$
C1 C -0.1291(3) -0.2993(4) 0.73409(15) 0.0240(7) Uani 1 1 d
C2 C -0.1971(3) -0.4124(4) 0.75067(17) 0.0293(8) Uani 1 1 d
H2 H -0.2397 -0.4735 0.7245 0.035 Uiso 1 1 calc R
C3 C -0.2011(3) -0.4336(4) 0.80518(17) 0.0308(8) Uani 1 1 d
H3 H -0.2470 -0.5085 0.8152 0.037 Uiso 1 1 calc R
(4 C - 0.1376(4) - 0.3445(4) - 0.84558(17) - 0.0316(8) Hani 1.1 d
$U_1 = 0.1382 - 0.3613 0.8274 0.028 Histor 1.1 color D$
$\Pi + \Pi - 0.1303 - 0.3013 0.0024 0.030 0.150 1 1 Calc R $
$C_{5} C_{-0.0737(4)} -0.2307(4) 0.82984(17) 0.0271(7) Uant 1 1 a$
H5 H -0.0339 -0.1689 0.8564 0.032 U1SO 1 1 CALC R .
C6 C -0.0675(3) -0.2061(3) 0.77472(15) 0.0235(7) Uani 1 1 d
C7 C -0.0015(3) -0.0824(3) 0.76152(14) 0.0227(7) Uani 1 1 d
H7 H 0.0157 -0.0136 0.7882 0.027 Uiso 1 1 calc R
C8 C 0.0893(3) 0.0703(3) 0.70618(14) 0.0217(6) Uani 1 1 d
(9 (0 0432(3) 0 1962(4) 0 72217(15) 0 0259(7) Uani 1 1 d
$H_{0} H_{-0} = 0.0230 \ 0.1978 \ 0.7414 \ 0.0311 \ H_{2} = 0.11 \ cm^{-1}$
13 1 - 0.0233 0.1370 0.7414 0.031 0130 1 1 cate R
CIO(C, 0.0990(4), 0.5207(4), 0.70099(15), 0.204(7), 0.0011, 1, 1, 0,, 0.0011, 1, 1, 0,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
HI0 H 0.0694 0.4054 0.7198 0.034 UISO I I CAIC R
CII C 0.1974(3) 0.3186(4) 0.68010(15) 0.0280(7) Uani I I d
H11 H 0.2342 0.4019 0.6719 0.034 Uiso 1 1 calc R
C12 C 0.2424(3) 0.1933(4) 0.66309(14) 0.0258(7) Uani 1 1 d
H12 H 0.3083 0.1926 0.6432 0.031 Uiso 1 1 calc R
C13 C 0.1878(3) 0.0686(3) 0.67612(13) 0.0212(6) Uani 1 1 d
C14 C 0.3402(3) -0.0895(3) 0.65632(13) 0.0229(7) Uani 1 1 d
H14 H 0 4000 -0 0235 0 6718 0 027 Iliso 1 1 calc R
$(15 \ C \ 0 \ 3877(3) \ -0 \ 2120(4) \ 0 \ 62262(14) \ 0 \ 0228(6) \ Uani \ 1 \ d$
$C16 \subset 0.5207(1) = 0.2120(1) 0.05202(11) 0.0220(0) 0.011 1 1 0$
C10 C 0.5202(4) -0.2555(5) 0.04224(15) 0.0251(7) 0.011 1 1 0
HIG H 0.5729 -0.1776 0.6666 0.030 UISO 1 1 CAIC R
C17 C 0.5748(3) -0.3409(4) 0.61693(15) 0.0279(7) Uani 1 I d
H17 H 0.6623 -0.3566 0.6250 0.034 Uiso 1 1 calc R
C18 C 0.4951(4) -0.4235(4) 0.57881(16) 0.0287(7) Uani 1 1 d
H18 H 0.5306 -0.4932 0.5604 0.034 Uiso 1 1 calc R
C19 C 0.3647(3) -0.4037(3) 0.56800(15) 0.0272(7) Uani 1 1 d
H19 H 0 3141 -0 4596 0 5422 0 033 Iliso 1 1 calc R
(20, 0, 3067(3), -0, 3000(3), 0, 59539(14), 0, 0230(6), Uani, 1, 1, d
$(21 \ 0 \ 0.032(4) \ -0.5403(4) \ 0.5533(11) \ 0.0206(8) \ U_{22}$
$(21 \times 0.005)(4) = 0.5405(4) = 0.50059(15) = 0.0290(6) = 0.0011 = 1 = 0.00111 = 0.00111 = 0.001111 = 0.001111 = 0.001111 = 0.001111 = 0.001111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.00111111 = 0.001111111111$
HZ1 H 0.0795 -0.5229 0.5565 0.055 0150 1 1 CATC R
C22 C = 0.1575(5) = 0.7033(5) 0.5828(2) 0.0484(12) Uani I I d
H22A H -0.1788 -0.7988 0.5741 0.073 Uiso 1 1 calc R
H22B H -0.2272 -0.6447 0.5665 0.073 Uiso 1 1 calc R
H22C H -0.1417 -0.6912 0.6218 0.073 Uiso 1 1 calc R
C23 C 0.0173(5) -0.7762(4) 0.53552(18) 0.0385(9) Uani 1 1 d
H23A H -0.0321 -0.8601 0.5344 0.058 Uiso 1 1 calc R
H23B H 0 1014 -0.7925 0 5561 0 058 Hiso 1 1 calc R
H23C H 0 0229 -0.7487 0 4989 0 058 Uiso 1 1 calc P
(2) (2) (3)
$C_{4} \subset W.3332(4) W.1214(4) W.47010(10) W.W327(0) Udili 1 I U$
Π24Α Π Ψ.20Ψδ Ψ.1429 Ψ.453Ψ Ψ.Ψ39 UISO Ι Ι CALC K
H24B H 0.4068 0.1115 0.45/2 0.039 Uiso 1 1 calc R

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23

_atom_site_ar	niso_U_13
$alom_{SILE_di}$	1150_0_{12}
01 0.01927(0)	0.010/5(0) $0.02214(0)$ $-0.000/1(4)$ $0.00040(5)$ $-0.00524(4)$
(12 0.0788(9))	0.0335(5) $0.0501(7)$ $0.0101(5)$ $0.0002(6)$ $-0.0100(5)$
CI3 0.0763(9)	0.0390(6) $0.0486(7)$ $-0.0146(5)$ $0.0257(6)$ $-0.0214(5)$
$01 \ 0.02/0(12)$	0.0193(11) $0.0298(13)$ $0.0019(9)$ $0.0053(10)$ $-0.0037(9)$
02 0.0264(13)	0.0318(13) $0.0249(13)$ $0.0038(10)$ $0.0039(10)$ $0.0021(10)$
03 0.0314(14)	$0.0351(14) \ 0.0408(16) \ -0.0130(12) \ 0.0041(12) \ -0.0113(11)$
04 0.0244(13)	$0.0309(12) \ 0.0298(14) \ -0.0026(11) \ 0.0052(10) \ -0.0078(10)$
05 0.0238(12)	$0.0269(11) \ 0.0271(13) \ -0.0038(10) \ 0.0031(10) \ -0.0018(10)$
N1 0.0346(17)	$0.0294(15) \ 0.0263(16) \ -0.0075(12) \ 0.0077(13) \ -0.0124(13)$
N2 0.0187(13)	$0.0191(12) \ 0.0242(14) \ 0.0001(10) \ 0.0018(11) \ -0.0016(10)$
N3 0.0244(14)	$0.0196(12) \ 0.0189(13) \ 0.0009(10) \ 0.0040(11) \ -0.0029(10)$
C1 0.0183(15)	0.0236(15) 0.0307(18) 0.0020(14) 0.0064(13) 0.0026(13)
C2 0.0226(17)	$0.0223(16) \ 0.043(2) \ 0.0010(15) \ 0.0057(15) \ -0.0029(13)$
C3 0.0239(17)	0.0252(17) 0.045(2) 0.0101(15) 0.0115(16) 0.0022(13)
C4 0.0328(19)	$0.0271(17) \ 0.038(2) \ 0.0090(15) \ 0.0157(16) \ 0.0081(14)$
C5 0.0267(18)	0.0238(16) 0.033(2) 0.0020(14) 0.0124(15) 0.0061(13)
C6 0.0205(15)	0.0199(15) 0.0315(18) 0.0023(13) 0.0082(13) 0.0017(12)
C7 0.0209(15)	$0.0187(14) \ 0.0275(17) \ -0.0020(12) \ 0.0021(13) \ 0.0001(12)$
C8 0.0234(16)	0.0193(15) $0.0205(16)$ $0.0021(12)$ $-0.0007(13)$ $-0.0016(12)$
C9 0.0288(17)	$0.0220(16) \ 0.0262(17) \ 0.0000(13) \ 0.0030(14) \ -0.0006(14)$
C10 0.0354(19)	0.0187(15) 0.0284(18) - 0.0014(13) - 0.0015(15) - 0.0005(14)
C11 0.0303(18)	0.0203(16) 0.0304(19) 0.0045(14) -0.0017(15) -0.0044(13)
C12 0.0284(17)	0.0228(16) 0.0247(17) 0.0009(13) 0.0010(14) -0.0064(13)
C13 0.0225(16)	0.0203(15) 0.0187(15) 0.0003(12) -0.0017(12) -0.0024(12)
C14 0.0245(16)	0.0227(15) $0.0207(16)$ $0.0006(12)$ $0.0022(13)$ $-0.0066(12)$
C15 0.0225(16)	0.0222(15) $0.0233(16)$ $0.0029(13)$ $0.0032(13)$ $-0.0024(13)$
C16 0.0241(17)	0.0258(17) 0.0251(18) 0.0028(13) 0.0036(14) -0.0055(12)
C17 0.0254(17)	0.0252(16) 0.033(2) 0.0059(14) 0.0062(15) -0.0010(13)
$C18 \ 0 \ 0317(18)$	$0 \ 0 \ 0234(16) \ 0 \ 0329(19) \ 0 \ 0024(14) \ 0 \ 0110(15) \ 0 \ 0007(14)$
$(19 \ 0 \ 0307(18))$	$0 \ 0 \ 0224(16) \ 0 \ 0281(18) \ -0 \ 0021(13) \ 0 \ 0045(15) \ -0 \ 0057(13)$
$(20 \ 0 \ 0217(15))$	$0 \ 0 \ 0211(15) \ 0 \ 0263(17) \ 0 \ 0018(13) \ 0 \ 0046(13) \ -0 \ 0030(12)$
$(21 \ 0 \ 0303(18))$	$0 \ 0.0300(18) \ 0.0273(18) \ -0.0029(14) \ 0.0027(15) \ -0.0105(14)$
(22, 0.053(3))	0.050(3) $0.046(3) - 0.012(2)$ $0.019(2) - 0.029(2)$
$(22 \ 0.055(5))$	0.0306(19) 0.037(2) = 0.0049(17) 0.0022(19) 0.0001(17)
$(23 \ 0.040(2) \ 0.0$	0.0280(18) = 0.027(18) = 0.0043(17) = 0.0022(13) = 0.0001(17)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag U1 01 1.776(2) . ? U1 02 1.788(2) . ? U1 04 2.260(3) . ? U1 05 2.275(3) . ? U1 03 2.410(3) . ? U1 N3 2.539(3) . ? U1 N2 2.549(3) . ?

Cl2 C24 1.759(4) . ? Cl3 C24 1.759(4) . ? O3 C21 1.249(5) . ? O4 C1 1.320(4) . ? N1 C21 1.307(5) . ? N1 C22 1.450(5) . ? N1 C22 1.450(5) . ? N1 C23 1.461(5) . ? N2 C7 1.290(4) . ? N2 C7 1.290(4) . ? N3 C14 1.289(4) . ? N3 C14 1.289(4) . ? C1 C2 1.409(5) . ? C1 C2 1.409(5) . ? C1 C2 1.409(5) . ? C2 C3 1.379(5) . ? C2 C3 1.379(5) . ? C2 H2 0.9300 . ? C3 C4 1.396(6) . ? C3 H3 0.9300 . ? C4 C5 1.383(5) . ? C4 C5 1.383(5) . ? C4 C5 1.383(5) . ? C4 C5 1.383(5) . ? C5 C6 1.404(5) . ? C5 C6 1.404(5) . ? C5 H5 0.9300 . ? C6 C7 1.449(4) . ? C7 H7 0.9300 . ? C8 C13 1.398(5) . ? C9 C10 1.402(5) . ? C9 H9 0.9300 . ? C10 C11 1.377(5) . ? C10 H10 0.9300 . ? C11 C12 1.390(5) . ? C11 C12 1.390(5) . ? C11 H11 0.9300 . ? C12 C13 1.396(4) . ? C12 C13 1.396(4) . ? C14 C15 1.449(5) . ? C14 C15 1.449(5) . ? C15 C20 1.422(5) . ? C16 C17 1.377(5) . ? C16 H16 0.9300 . ? C17 C18 1.398(5) . ? C17 C18 1.398(5) . ? C17 C18 1.398(5) . ? C17 C18 1.398(5) . ? C17 H17 0.9300 . ? C13 C20 1.413(5) . ? C14 H14 0.9300 . ? C15 C20 1.413(5) . ? C16 H16 0.9300 . ? C17 C18 1.398(5) . ? C17 H17 0.9300 . ? C17 C18 1.398(5) . ? C18 C19 1.380(5) . ? C19 H19 0.9300 . ? C22 H22A 0.9600 . ? C22 H22A 0.9600 . ? C23 H23A 0.9600 . ? C23 H23B 0.9600 . ? C24 H24B 0.9700 . ? C25 H25B 0.9600 . ? C25 H25B 0.9600 . ? C26 H25B 0.9600 . ? C27 H25
--

loop_
 _geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle

_9	jeon	n_ar	ngle	_s	it	e_	sy	mm	letr	'y_1
_ <u>c</u>	Jeon	∥_ar	igre	_S n	uh	e_ 1	Sy f1	au au	lett	·y_3
01	U1	02	176	5.9	4(11)		. ?	•
01	U1	04	89.	53	(1	1)			?	
02	U1	04	90.	81	(1	1)	•	•	?	
01	U1	05	88.	78	(1)	1)	•	•	?	
02		05	92.	01 0	(1)	1) 10	· ·	•	? ?	,
04		03	91	76 76	3(1	1)	9	•	· ' ?	
02	U1	03	91.	31	(1)	1)			?	
04	U1	03	80.	49	(1	0)			?	
05	U1	03	76.	52	(9)	•	•	?	
01	U1	N3	87.	03	(1)	0)	•	•	?	
02		N 3 N 2	90.	51	(1)	(1)	•	•	? 2	
04		NS	70	10	(9	9))	•	•	' ?	
03	U1	N3	146	5.6	2(ý)	۰.	۰.	?	
01	U1	N2	88.	14	(1	0)			?	
02	U1	N2	89.	12	(1	1)			?	
04	U1	N2	69.	63	(9)	·	•	?	
05	U1	NZ N2	133	5.3 1	2($\frac{9}{0}$	•	•	?	
05 N3		N2 N2	63	23	2(۶J ۱	•	•	' ?	
C21	101	3 U1	13	2.	4(2)	۰.	۰.	?	
C1	04	U1	128	. 8	(2)			?	
C20	05	5 U1	12	9.	7(2)			?	
C21	L N1	L CZ	22 1	.20	.8	(4)	•	. ?)
C21	LN]		23 1 22 1	22	.1	(3)	•	. ?	,
C22	. IN J СИ		נכ: 110	.17	. U (3	ι Γ)	•	· ' 7	
C7	N2	U1	126	5.1	(2))	:	:	?	
C8	N2	U1	114	.4	(2	Ĵ			?	
C14	4 N3	3 C1	.3 1	.19	.3	(3)	•	. ?	•
C14	4 N3	3 U1	12	5.	6(2)	•	•	?	
C1:	5 N 3 C 1	5 UI	126	.4.	8(2) \	•	•	?	
04	C1	C2 C6	120	1.' 6	(3)	ן ו	•	•	: 7	
C2	C1	C6	118	3.3	(3	ĵ			?	
C3	C2	C1	120	.8	(3)			?	
C3	C2	H2	119	.6	•	•	?			
C1	C2	H2	119	.6		्.	?		2	
C_2	C3	С4 цз	121	1	(3)	• 7	•	?	
C4	C3	H3	119).4			?			
C5	C4	C3	118	.7	(4)			?	
C5	C4	H4	120	.6			?			
C3	C4	H4	120	.6			?		_	
C4	C5	C6	121	6	(4)	• .	•	?	
C4 C6	C5	но н5	110	1.2	•	•	? ?			
C5	C6	C1	119	.3	(3).			?	
C5	C6	C7	118	1.1	(3	ĵ			?	
C1	C6	C7	122	. 5	(3)			?	
N2	C7	C6	124	.9	(3)	•	•	?	
NZ CE	C7	H/ די	117	.6	•	•	?			
C0	ري ۲ (۲	п/ 3 СС	17) 17	.0 0	· · 21	י. גצ	?		7	
C13	20 CE	3 N2	2 11	6.	6(3)	:		?	
C9	C8	N2	123	.1	(3)		•	?	
C8	C9	C10) 11	9.	2(3)	•	•	?	

C8 C9 H9 120.4 . . ? C10 C9 H9 120.4 . . ? C11 C10 C9 120.5(3) . . ? C11 C10 H10 119.8 . . ? C9 C10 H10 119.8 . . ? C10 C11 C12 120.7(3) . . ? C10 C11 H11 119.6 . . ? C12 C11 H11 119.6 . . ? C11 C12 C13 119.3(3) . . ? C11 C12 H12 120.3 . . ? C13 C12 H12 120.3 . . ? C8 C13 C12 H12 120.1(3) . . ? C8 C13 N3 116.4(3) . . ? C12 C13 N3 123.4(3) . . ? N3 C14 C15 125.6(3) . . ? N3 C14 H14 117.2 . . ? C15 C14 H14 117.2 . . ? C16 C15 C20 119.1(3) . . ? C16 C15 C14 118.5(3) . . ? C20 C15 C14 122.1(3) . . ? C17 C16 C15 122.4(3) . . ? C17 C16 H16 118.8 . . ? C15 C16 H16 118.8 . . ? C16 C17 C18 118.2(3) . . ? C16 C17 H17 120.9 . . ? C18 C17 H17 120.9 . . ? C19 C18 C17 121.2(3) . . ? C19 C18 H18 119.4 . . ? C17 C18 H18 119.4 . . ? C18 C19 C20 121.3(3) . . ? C18 C19 H19 119.4 . . ? C20 C19 H19 119.4 . . ? 05 C20 C19 119.9(3) . . ? 05 C20 C15 122.3(3) . . ? C19 C20 C15 117.7(3) . . ? O3 C21 N1 124.6(4) . . ? O3 C21 H21 117.7 . . ? N1 C21 H21 117.7 . . ? N1 C22 H22A 109.5 . . ? N1 C22 H22B 109.5 . . ? H22A C22 H22B 109.5 . . ? N1 C22 H22C 109.5 . . ? H22A C22 H22C 109.5 . . ? H22B C22 H22C 109.5 . . ? N1 C23 H23A 109.5 . . ? N1 C23 H23B 109.5 . . ? H23A C23 H23B 109.5 . . ? N1 C23 H23C 109.5 . . ? H23A C23 H23C 109.5 . . ? H23B C23 H23C 109.5 . . ? Cl2 C24 Cl3 110.4(2) . . ? Cl2 C24 H24A 109.6 . . ? Cl3 C24 H24A 109.6 . . ? Cl2 C24 H24B 109.6 . . ? Cl3 C24 H24B 109.6 . . ? H24A C24 H24B 108.1 . . ?

loop_

_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3

_6	geor	n_to	prsion_atom_site_label_4
_9	geor	n_to	orsion
_2	geor	n_to	orsion_site_symmetry_1
_6	geor	n_to	orsion_site_symmetry_2
_6	geor	n_to	prsion_site_symmetry_3
_6	geor	n_to	prsion_site_symmetry_4
_2	geor	n_to	prsion_publ_flag
01	U1	03	$C21 - 58.2(4) \ldots ?$
02	U1	03	$C21 121.9(4) \ldots ?$
04	U1	03	$C21 - 147.5(4) \dots ?$
05	U1	03	$C21 \ 30.1(3) \ . \ . \ . \ ?$
N3	U1	03	$C21 29.0(4) \dots ?$
NZ	01	03	(21 - 14/.6(3) ?)
01	01	04	$C1 32.6(3) \dots ?$
02		04	$(1 - 144.4(3) \dots (3))$
05		04	$(1 118.4(3) \dots (2))$
U3 N2		04	$(1 \ 124.4(3) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
N 3		04	$(1 - 52.9(3) \dots (2))$
		04	$(1 - 55.0(5) \dots (2)$
01			$(20 - 34.3(3) \dots)$
04		05	$(20 \ 142.0(3) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
04		05	(20 - 120.3(3)
M3	111	05	(20 52 8(3))
N2	U1	05	(20 51 8(3) 7)
01	U1	N2	(7 - 54.6(3) + 2.2)
02	Ū1	N2	$(7 \ 126.8(3) \ . \ . \ . \ ?$
04	U1	N2	C7 35.6(3) ?
05	U1	N2	C7 -141.2(3) ?
03	U1	N2	C7 35.7(4) ?
N3	U1	N2	C7 -142.2(3) ?
01	U1	N2	C8 118.7(2) ?
02	U1	N2	C8 -60.0(2) ?
04	U1	N2	C8 -151.2(2) ?
05	U1	N2	C8 32.1(3) ?
03	U1	N2	(8 - 151.1(2) ?)
N3	UI	NZ	(8 31.0(2) ?)
01		N3 N2	$(14 \ 52.6(3) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
02		N3 N2	$(14 - 129.3(3) \dots (3)$
04		C M N D	$(14 \ 159.2(5) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
03		N S N S	(14 - 37.2(3)
N2		MS	(14 - 50.1(4)
01	U1	NS	(13 - 120 3(2))
02	U1	N3	(13 57.9(2) ?)
04	U1	N3	C13 -33.7(3) ?
05	U1	N3	C13 149.9(2) ?
03	U1	N3	C13 151.0(2) ?
N2	U1	N3	C13 -30.9(2) ?
U1	04	C1	C2 -131.0(3) ?
U1	04	C1	$C6 51.0(4) \dots ?$
04	C1	C2	C3 -179.5(3) ?
C6	C1	C2	(3 - 1.4(5) ?)
C1	C2	C3	(4 - 0.4(5) ?)
	C3		(5 2.3(5) ?)
		C5	$C_0 - 2.4(5)$
C4		00	(7 178 3(3)) ?
04	C_{1}	6	(5 179 3(3) ?)
C2	C1	C6	(5 1.3(5)
04	C1	C6	C7 1.7(5) ?

C2 C1 C6 C7 -176.3(3) ? C8 N2 C7 C6 174.8(3) ? U1 N2 C7 C6 -12.3(5) ? C5 C6 C7 N2 164.8(3) ? C1 C6 C7 N2 -17.5(5) ? C7 N2 C8 C13 144.2(3) ? U1 N2 C8 C13 -29.6(3) ? C7 N2 C8 C9 -40.2(5) ? U1 N2 C8 C9 -40.2(5) ? U1 N2 C8 C9 146.0(3) ? C7 N2 C8 C9 C10 -1.7(5) ? N2 C8 C9 C10 -177.1(3) ? C9 C10 C11 C12 0.5(5) ? C9 C10 C11 C12 0.5(5) ? C9 C10 C11 C12 0.5(5) ? C9 C8 C13 C12 1.5(5) ? N2 C8 C13 C12 1.5(5) ? N2 C8 C13 C12 1.5(5) ? N2 C8 C13 N3 -175.2(3) ? C11 C12 C13 N3 176.2(3) ? C11 C12 C13 N3 176.2(3) ? C14 N3 C13 C8 -144.3(3) ? U1 N3 C13 C8 29.0(3) ? U1 N3 C13 C12 -147.6(3) ? U1 N3 C13 C12 -147.6(3) ? U1 N3 C14 C15 15.4(5) ? N3 C14 C15 C16 -169.6(3) ? C14 C15 C16 C17 -173.2(3) ? C14 C15 C16 C17 -173.2(3) ? C15 C16 C17 C18 2.5(5) ? C16 C17 C18 C19 -2.2(5) ? C17 C18 C19 C20 -0.6(5) ? C16 C17 C18 C19 -2.2(5) ? C17 C18 C19 C20 -0.6(5) ? C16 C17 C18 C19 -2.2(5) ? C16 C17 C18 C19 -2.2(5) ? C17 C18 C19 C20 -0.6(5) ? C16 C17 C18 C19 -2.2(5) ? C16 C17 C18 C19 -2.2(5) ? C16 C17 C18 C19 -2.2(5) ? C17 C18 C19 C20 -0.6(5) ? C14 C15 C20 C15 -44.6(4) ? C15 C16 C17 C18 2.5(5) ? C16 C15 C20 O5 -179.1(3) ? C16 C15 C20 O5 -179.1(3) ? C14 C15 C20 C19 139.1(3) ? C14 C15 C20 C19 170.3(3) ? C15 C16 C17 C18 C19 2.7(5) ? C16 C15 C20 C19 170.3(3) .	
_diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.964 _refine_diff_density_min -0.740 _refine_diff_density_rms 0.112	0.997 27.48 0.997
Appendix B

Crystallographic Information of $[U^{VI}O_2(saloph)]_2$

data_shelxl

SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? _chemical_name_common ? _chemical_melting_point 'C40 H28 N4 O8 U2 ' _chemical_formula_moiety _chemical_formula_sum 'C40 H28 N4 O8 U2 1168.72 _chemical_formula_weight loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source <u>'</u>с' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Н' 'Η' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'U' 'U' -9.6767 9.6646 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic 'P -1' _symmetry_space_group_name_H-M loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 15.689(7)

_cell_length_b	16.044(5)
_cell_length_c	17.642(7)
_cell_angle_alpha	67.00(3)
_cell_angle_beta	78.25(3)
_cell_angle_gamma	81.72(3)
_cell_volume	3992(3)
_cell_formula_units_Z	4
_cell_measurement_temperature	93(2)
_cell_measurement_reflns_used	37292
_cell_measurement_theta_min	3.0
_cell_measurement_theta_max	27.5
_exptl_crystal_description	'block'
_exptl_crystal_colour	'red'
_exptl_crystal_size_max	0.20
_exptl_crystal_size_mid	0.10
_exptl_crystal_size_min	0.10
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.945
_exptl_crystal_density_method	'not measured'
_expt1_crystal_F_000	21/6
_exptl_absorpt_coefficient_mu	8.158
_exptl_absorpt_correction_type	multi-scan
_exptl_absorpt_correction_T_min	0.2923
_exptl_absorpt_correction_T_max	0.4959
_exptl_absorpt_process_details	
;	
Higashi, T. (1995). Program f	or Absorption Correction.
Rigaku Corporation, Tokyo, Ja	ipan.
,	
di CC-ma ambient termenature	02(2)
_diffrn_ampient_temperature	93(2)
_diffrm_radiation_wavelength	0./10/5 MoVVo
_uliffn_radiation_type	NON#d
_ullin_raulation_source	anonhito
_ullin_raulation_monochromator	'Digalay DAVIS DADID'
	NIYAKU NANIS-NAFID
diffrn dotoctor aroa rosol moan	±w 10 00
_uiiiii_uetectoi_aiea_iesoi_mean	24802
	54695 0 0697
diffrn roflns av sigmaI/notI	
_uiiiii_ieiiiis_av_sigmai/meti	0.0007
diffrn roflns limit h min	0.0894
_diffrn_reflns_limit_h_min diffrn_reflns_limit_h_max	0.0894 -20 20
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min	0.0894 -20 20
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max	0.0894 -20 20 -20
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min	0.0894 -20 20 -20 20 -20
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max	0.0894 -20 20 -20 20 -22 20
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min	0.0894 -20 20 -20 20 -22 22 3.00
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max	0.0894 -20 20 -20 20 -22 22 3.00 27 48
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total reflns_number_dt	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(T)
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I)
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data collection	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO'
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_cell refinement	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO'
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_data_reduction	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO' 'CrystalStructure'
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_data_reduction _computing_data_reduction _computing_structure solution	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO' 'CrystalStructure' 'DIRDIF99 (PATTY)'
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_data_reduction _computing_structure_solution _computing_structure_refinement	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'SHELXL-97 (Sheldrick. 1997)'
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_data_reduction _computing_structure_solution _computing_structure_refinement _computing_molecular_graphics	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'SHELXL-97 (Sheldrick, 1997)' ?
_diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_data_collection _computing_data_reduction _computing_structure_solution _computing_structure_refinement _computing_molecular_graphics _computing_publication_material	0.0894 -20 20 -20 20 -22 22 3.00 27.48 17643 12239 >2sigma(I) 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'PROCESS-AUTO' 'SHELXL-97 (Sheldrick, 1997)' ?

_refine_special_details

1

Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _____refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc $w=1/[\frac{1}{2}s^2(Fo^2)+(0.0256P)^2+46.5808P]$ where $P=(Fo^2+2Fc^2)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? 17643 _refine_ls_number_reflns _refine_ls_number_parameters 974 _refine_ls_number_restraints ۵ _refine_ls_R_factor_all 0.0983 _refine_ls_R_factor_gt 0.0578 _refine_ls_wR_factor_ref 0.1082 _refine_ls_wR_factor_gt 0.0974 _refine_ls_goodness_of_fit_ref 1.022 _refine_ls_restrained_S_all 1.022 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group U1 U 0.24047(2) 0.43472(2) 0.00772(2) 0.02418(9) Uani 1 1 d . . . U2 U 0.28782(2) 0.17798(2) 0.04840(2) 0.02285(9) Uani 1 1 d . . . U3 U 0.57203(2) 0.69471(2) 0.53808(2) 0.02397(9) Uani 1 1 d . . . U4 U 0.80417(2) 0.73859(2) 0.41050(2) 0.02339(9) Uani 1 1 d . . 01 0 0.1316(5) 0.4471(4) 0.0563(4) 0.0294(16) Uani 1 1 d . . 02 0 0.3520(4) 0.4254(5) -0.0362(4) 0.0307(16) Uani 1 1 d . . . 03 0 0.2072(4) 0.5247(4) -0.1173(4) 0.0256(15) Uani 1 1 d . . . 04 0 0.2578(4) 0.2901(4) 0.1166(4) 0.0267(15) Uani 1 1 d . . 05 0 0.1845(5) 0.1309(4) 0.0875(4) 0.0309(16) Uani 1 1 d . . 06 0 0.3927(5) 0.2211(4) 0.0034(4) 0.0293(16) Uani 1 1 d . 07 0 0.3333(4) 0.0873(4) 0.1667(4) 0.0264(15) Uani 1 1 d . . . 08 0 0.2114(4) 0.3133(4) -0.0342(4) 0.0204(14) Uani 1 1 d . . .

09 0 0.5014(4) 0.7804(4) 0.4782(4) 0.0285(16) Uani 1 1 d
010 0 0.6392(5) 0.6118(5) 0.6048(4) 0.0319(17) Uani 1 1 d
011 0 0 6778(4) 0 8056(4) 0 4791(4) 0 0254(15) Uani 1 1 d
012 0 0 0006(4) 0 0000(4) 0 0000(1) 0 0000(1) 0 0000(1) 1 1 d
012 0 0.4300(4) 0.3320(4) 0.3400(3) 0.0311(1) 0.011 1 1 0 012 0 0.000(5) 0.0310(1) 0.0011(1) 0.001(1) 0.001(1) 0
$013 \ 0 \ 0.7909(5) \ 0.8120(4) \ 0.3071(4) \ 0.0287(16) \ 0an1 \ 1 \ 1 \ d \ . \ .$
014 0 0.8222(4) 0.6588(4) 0.5109(4) 0.0266(15) Uani 1 1 d
015 0 0.6750(4) 0.6696(4) 0.4201(4) 0.0239(14) Uani 1 1 d
016 0 0.8704(5) 0.8441(5) 0.4226(5) 0.0323(17) Uani 1 1 d
N1 N 0.2422(6) 0.5995(5) -0.0103(5) 0.0292(19) Uani 1 1 d
N2 N 0 2874(6) 0 4616(6) 0 1254(5) 0 031(2) Uani 1 1 d
M_2 N 0.2014(0) 0.4010(0) 0.1234(3) 0.0310(2) 0.011 1 1 4
NA N $0.3433(3)$ $0.0273(3)$ $0.0302(3)$ $0.0243(10)$ Ualit I I U
N4 N 0.2781(5) 0.1621(5) -0.0847(5) 0.0262(18) 0.011 1 1 a
N5 N 0.5626(5) 0.7843(5) 0.6323(5) 0.0257(18) Uani I I d
N6 N 0.4476(5) 0.6645(5) 0.6601(5) 0.0263(18) Uani 1 1 d
N7 N 0.8522(5) 0.6142(5) 0.3549(5) 0.0228(17) Uani 1 1 d
N8 N 0.9654(6) 0.7220(5) 0.3581(5) 0.0277(19) Uani 1 1 d
$(1 \ (0, 1435(7) \ 0, 5892(7) \ -0, 1341(6) \ 0, 029(2) \ \text{Hani} \ 1 \ 1 \ d$
$(2 \ (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
$U_2 = 0.0000(0, 0.3335(7) - 0.1034(7), 0.037(5))$ dall 1 1 U_1
π_{2} π_{1} π_{2} π_{1} π_{2} π_{2} π_{1} π_{2} π_{2} π_{1} π_{2} π_{2
$C_3 \subset 0.0184(7) \ 0.6571(8) - 0.2032(7) \ 0.038(3) \ Uani \ 1 \ 1 \ d \ . \ .$
H3 H -0.0199 0.6564 -0.2384 0.046 Uiso 1 1 calc R
C4 C 0.0020(7) 0.7218(8) -0.1680(7) 0.039(3) Uani 1 1 d
H4 H -0.0471 0.7646 -0.1773 0.047 Uiso 1 1 calc R
C5 C 0.0594(7) 0.7222(7) -0.1189(7) 0.039(3) Uani 1 1 d
H5 H 0 0504 0 7680 -0 0960 0 046 Iliso 1 1 calc B
(6, 0, 1315(7), 0, 6574(7), -0, 1008(7), 0, 034(3), Uapi, 1, 1, d
$C_{1} = C_{1} = C_{1$
C = (0.1870(7) 0.0051(7) - 0.0481(7) 0.034(5) 0.011 1 1 0
H/ H 0.1830 0.7188 -0.0400 0.041 UISO I I CAIC R
C8 C 0.2987(6) 0.6193(8) 0.0318(8) 0.035(3) Uani 1 1 d
C9 C 0.3321(7) 0.7041(8) 0.0041(9) 0.044(3) Uani 1 1 d
H9 H 0 3139 0 7527 -0 0428 0 052 Uiso 1 1 calc R
11 $11 $ $0.$ $31 $ 31
$(10 \ C \ 0.3915(8) \ 0.7164(9) \ 0.0456(10) \ 0.054(4) \ Uani \ 1 \ 1 \ d \ . \ .$
C10 C $0.3915(8)$ $0.7164(9)$ $0.0426(10)$ $0.054(4)$ Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R
C10 C $0.3915(8)$ $0.7164(9)$ $0.0426(10)$ $0.054(4)$ Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R
C10 C $0.3915(8)$ $0.7164(9)$ $0.0456(10)$ $0.054(4)$ Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C $0.4189(8)$ $0.6468(10)$ $0.1121(10)$ $0.057(4)$ Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R
C10 C $0.3915(8)$ $0.7164(9)$ $0.0456(10)$ $0.054(4)$ Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C $0.4189(8)$ $0.6468(10)$ $0.1121(10)$ $0.057(4)$ Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C $0.3853(8)$ $0.5609(9)$ $0.1436(9)$ $0.055(4)$ Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H12 H 0.4029 0.5321(8) 0.2408(6) 0.036(3) Uani 1 1 d C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.2180(7) 0.3284 0.3561 0.040 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d C12 C 0.3248(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C22 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R . C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R . C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R . C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R . C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R . C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R . C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R . C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H2 H 0.3128 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H2 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.040(3) Uani 1 1 d H2 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d H2 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d H2 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3261 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d H23 H 0.2993 -0.1276 0.4155 0.064 Uiso 1 1 calc R
C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.053(4) Uani 1 1 d C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.050(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d H23 H 0.2993 -0.1276 0.4155 0.064 Uiso 1 1 calc R C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d
<pre>H 0.13915(1) 0.1420 0.3425(10) 0.0456(10) 0.054(4) Uani 1 1 d C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d H12 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d H23 H 0.2993 -0.1276 0.4155 0.064 Uiso 1 1 calc R C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R</pre>
<pre>H1 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 1.1 d C10 C 0.3915(8) 0.7164(9) 0.0456(10) 0.054(4) Uani 1 1 d C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R . C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R . C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H16 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R . C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R . C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R . C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3570(7) 0.053(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d</pre>
<pre>H1 0.191 0.191 0.191 0.191 0.0410 0.011 1.1 0.0014 (4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d H23 H 0.2993 -0.1276 0.4155 0.064 Uiso 1 1 calc R C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.0954(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.067(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d H25 H 0.3263 -0.2048 0.2204 0.065 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d H25 H 0.3263 -0.2048 0.2204 0.065 Uiso 1 1 calc R</pre>
<pre>H3 h 0.315 0.7743 0.0276 0.0456(10) 0.054(4) Uani 1 1 d H10 H 0.4138 0.7743 0.0276 0.064 Uiso 1 1 calc R . C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R . C12 C 0.3853(8) 0.5609(9) 0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R . C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R . C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d C16 C 0.2180(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R . C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R . C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R . C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R . C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d C22 C 0.3147(8) -0.0240(8) 0.3041(7) 0.040(3) Uani 1 1 d C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d C24 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d .</pre>
<pre>Hb h (0.3915) (0.3915) (0.3916) (0.0456) (10) (0.054(4) Uani 1 1 d H10 H 0.4138 (0.7743 0.0276 0.0456) (10) (0.054(4) Uani 1 1 d H11 H 0.4138 (0.7743 0.0276 0.064 Uiso 1 1 calc R C11 C 0.4189(8) 0.6468(10) 0.1121(10) 0.057(4) Uani 1 1 d H11 H 0.4620 0.6565 0.1380 0.069 Uiso 1 1 calc R C12 C 0.3853(8) 0.5609(9) (0.1436(9) 0.055(4) Uani 1 1 d H12 H 0.4029 0.5135 0.1915 0.066 Uiso 1 1 calc R C13 C 0.3247(7) 0.5481(8) 0.1012(8) 0.037(3) Uani 1 1 d C14 C 0.2763(7) 0.4106(8) 0.2024(7) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.3231(8) 0.2408(6) 0.036(3) Uani 1 1 d H14 H 0.2939 0.4329 0.2390 0.044 Uiso 1 1 calc R C15 C 0.2403(7) 0.2933(8) 0.3279(6) 0.033(2) Uani 1 1 d H16 H 0.2312 0.3284 0.3561 0.040 Uiso 1 1 calc R C17 C 0.1773(8) 0.2141(9) 0.3732(7) 0.050(3) Uani 1 1 d H17 H 0.1593 0.1962 0.4318 0.060 Uiso 1 1 calc R C18 C 0.1628(7) 0.1606(8) 0.3315(7) 0.042(3) Uani 1 1 d H18 H 0.1352 0.1054 0.3620 0.050 Uiso 1 1 calc R C19 C 0.1881(7) 0.1868(7) 0.2465(6) 0.032(2) Uani 1 1 d H19 H 0.1783 0.1488 0.2195 0.039 Uiso 1 1 calc R C20 C 0.2275(7) 0.2669(7) 0.1993(6) 0.028(2) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C21 C 0.3248(7) 0.0017(7) 0.2173(7) 0.030(2) Uani 1 1 d H22 H 0.3128 0.0212 0.3267 0.049 Uiso 1 1 calc R C23 C 0.3075(9) -0.1128(9) 0.3570(7) 0.053(4) Uani 1 1 d H23 H 0.2993 -0.1276 0.4155 0.064 Uiso 1 1 calc R C24 C 0.3120(11) -0.1823(9) 0.3267(8) 0.067(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d H24 H 0.3078 -0.2439 0.3637 0.080 Uiso 1 1 calc R C25 C 0.3227(9) -0.1584(7) 0.2420(8) 0.054(4) Uani 1 1 d C26 C 0.3285(8) -0.0683(7) 0.1860(7) 0.039(3) Uani 1 1 d C26 C 0.3285(8) -0.0683(7) 0.1860(7)</pre>

H27 H 0.3595 -0.1028 0.0836 0.042 Uiso 1 1 calc R . C28 C 0.3792(6) 0.0289(6) -0.0454(6) 0.027(2) Uani 1 1 d . . . C29 C 0.4428(6) -0.0332(6) -0.0664(7) 0.030(2) Uani 1 1 d . . . H29 H 0.4702 -0.0797 -0.0241 0.036 Uiso 1 1 calc R . C30 C 0.4657(7) -0.0272(8) -0.1480(7) 0.036(3) Uani 1 1 d . . . H30 H 0.5063 -0.0714 -0.1611 0.044 Uiso 1 1 calc R . C31 C 0.4295(7) 0.0432(8) -0.2108(7) 0.036(3) Uani 1 1 d . . . H31 H 0.4460 0.0471 -0.2669 0.043 Uiso 1 1 calc R . C32 C 0.3690(7) 0.1083(7) -0.1926(7) 0.030(2) Uani 1 1 d . . . H32 H 0.3454 0.1572 -0.2360 0.036 Uiso 1 1 calc R . C33 C 0.3438(7) 0.1006(7) -0.1102(6) 0.028(2) Uani 1 1 d . . . C34 C 0.2132(6) 0.1918(7) -0.1250(6) 0.028(2) Uani 1 1 d . . . H34 H 0.2126 0.1699 -0.1678 0.034 Uiso 1 1 calc R . C35 C 0.1409(6) 0.2550(6) -0.1123(6) 0.024(2) Uani 1 1 d . . . C36 C 0.0678(7) 0.2602(7) -0.1491(6) 0.030(2) Uani 1 1 d . . . H36 H 0.0684 0.2210 -0.1779 0.036 Uiso 1 1 calc R . C37 C -0.0039(7) 0.3188(7) -0.1455(6) 0.031(2) Uani 1 1 d . . . H37 H -0.0527 0.3207 -0.1706 0.037 Uiso 1 1 calc R . . C38 C -0.0018(6) 0.3763(7) -0.1026(6) 0.027(2) Uani 1 1 d . . . H38 H -0.0502 0.4185 -0.0995 0.032 Uiso 1 1 calc R . . C39 C 0.0672(6) 0.3732(6) -0.0658(6) 0.023(2) Uani 1 1 d . . . H39 H 0.0652 0.4127 -0.0369 0.028 Uiso 1 1 calc R. C40 C 0.1413(6) 0.3134(6) -0.0691(6) 0.023(2) Uani 1 1 d . . . C41 C 0.6605(7) 0.8966(7) 0.4628(6) 0.029(2) Uani 1 1 d . . . C42 C 0.6846(7) 0.9607(7) 0.3845(7) 0.034(3) Uani 1 1 d . . . H42 H 0.7116 0.9411 0.3404 0.041 Uiso 1 1 calc R . C43 C 0.6708(7) 1.0521(7) 0.3682(7) 0.034(3) Uani 1 1 d . . . H43 H 0.6895 1.0943 0.3137 0.041 Uiso 1 1 calc R . C44 C 0.6296(7) 1.0834(7) 0.4310(7) 0.037(3) Uani 1 1 d . . . H44 H 0.6197 1.1466 0.4200 0.045 Uiso 1 1 calc R . C45 C 0.6035(7) 1.0200(7) 0.5097(7) 0.031(2) Uani 1 1 d . . . H45 H 0.5770 1.0403 0.5535 0.038 Uiso 1 1 calc R . C46 C 0.6152(7) 0.9258(6) 0.5265(6) 0.028(2) Uani 1 1 d . . . C47 C 0.5789(7) 0.8664(7) 0.6100(6) 0.029(2) Uani 1 1 d . . . H47 H 0.5662 0.8917 0.6519 0.035 Uiso 1 1 calc R C48 C 0.5287(6) 0.7337(6) 0.7181(6) 0.026(2) Uani 1 1 d . . . C49 C 0.5536(7) 0.7450(7) 0.7845(6) 0.026(2) Uani 1 1 d . . . H49 H 0.5905 0.7914 0.7746 0.032 Uiso 1 1 calc R . C50 C 0.5241(7) 0.6878(7) 0.8655(7) 0.035(3) Uani 1 1 d . . . H50 H 0.5421 0.6939 0.9113 0.042 Uiso 1 1 calc R . C51 C 0.4683(7) 0.6220(7) 0.8795(7) 0.039(3) Uani 1 1 d . . . H51 H 0.4496 0.5817 0.9348 0.046 Uiso 1 1 calc R . C52 C 0.4396(8) 0.6146(7) 0.8134(7) 0.037(3) Uani 1 1 d . . . H52 H 0.3989 0.5716 0.8234 0.045 Uiso 1 1 calc R . C53 C 0.4710(6) 0.6711(7) 0.7319(6) 0.028(2) Uani 1 1 d . . . C54 C 0.3705(7) 0.6481(7) 0.6596(7) 0.035(3) Uani 1 1 d . . . H54 H 0.3271 0.6484 0.7058 0.042 Uiso 1 1 calc R . C55 C 0.3437(7) 0.6291(7) 0.5949(7) 0.032(2) Uani 1 1 d . . . C56 C 0.2534(7) 0.6362(7) 0.5905(7) 0.033(2) Uani 1 1 d . . . H56 H 0.2117 0.6568 0.6277 0.040 Uiso 1 1 calc R C57 C 0.2265(7) 0.6128(7) 0.5319(8) 0.040(3) Uani 1 1 d . . . H57 H 0.1665 0.6213 0.5267 0.048 Uiso 1 1 calc R . C58 C 0.2865(8) 0.5769(7) 0.4803(7) 0.035(3) Uani 1 1 d . . . H58 H 0.2670 0.5579 0.4424 0.042 Uiso 1 1 calc R . C59 C 0.3743(7) 0.5692(6) 0.4846(7) 0.032(2) Uani 1 1 d . . . H59 H 0.4145 0.5439 0.4499 0.039 Uiso 1 1 calc R . . C60 C 0.4053(7) 0.5974(6) 0.5383(6) 0.026(2) Uani 1 1 d . . . C61 C 0.6537(7) 0.6532(7) 0.3565(6) 0.028(2) Uani 1 1 d . . . C62 C 0.5686(7) 0.6739(8) 0.3393(7) 0.039(3) Uani 1 1 d . H62 H 0.5264 0.7011 0.3711 0.047 Uiso 1 1 calc R . . C63 C 0.5448(8) 0.6555(9) 0.2769(8) 0.049(3) Uani 1 1 d . . .

H63 H 0.4861 0.6698 0.2673 0.058 Uiso 1 1 calc R . C64 C 0.6036(8) 0.6168(9) 0.2275(8) 0.050(3) Uani 1 1 d . . . H64 H 0.5865 0.6050 0.1842 0.060 Uiso 1 1 calc R . C65 C 0.6872(7) 0.5963(7) 0.2440(6) 0.033(2) Uani 1 1 d . . . H65 H 0.7283 0.5689 0.2116 0.040 Uiso 1 1 calc R . C66 C 0.7149(6) 0.6140(6) 0.3065(6) 0.025(2) Uani 1 1 d . . . C67 C 0.8066(6) 0.5888(6) 0.3153(6) 0.023(2) Uani 1 1 d . . . H67 H 0.8364 0.5491 0.2887 0.028 Uiso 1 1 calc R . C68 C 0.9413(7) 0.5791(7) 0.3564(6) 0.028(2) Uani 1 1 d . . . C69 C 0.9716(7) 0.4935(6) 0.3543(7) 0.035(3) Uani 1 1 d . . . H69 H 0.9324 0.4548 0.3523 0.041 Uiso 1 1 calc R . C70 C 1.0590(8) 0.4659(8) 0.3550(8) 0.044(3) Uani 1 1 d . . . H70 H 1.0795 0.4081 0.3527 0.053 Uiso 1 1 calc R . C71 C 1.1171(8) 0.5196(8) 0.3590(8) 0.044(3) Uani 1 1 d . . . H71 H 1.1769 0.4993 0.3602 0.053 Uiso 1 1 calc R . . C72 C 1.0871(7) 0.6038(7) 0.3613(6) 0.032(2) Uani 1 1 d . . . H72 H 1.1264 0.6407 0.3659 0.038 Uiso 1 1 calc R . . C73 C 1.0013(7) 0.6352(7) 0.3570(6) 0.030(2) Uani 1 1 d . . C74 C 1.0151(7) 0.7889(7) 0.3176(6) 0.031(2) Uani 1 1 d . . H74 H 1.0704 0.7767 0.2884 0.037 Uiso 1 1 calc R . . C75 C 0.9918(8) 0.8818(7) 0.3138(8) 0.041(3) Uani 1 1 d . . . C76 C 1.0457(8) 0.9498(8) 0.2565(9) 0.053(3) Uani 1 1 d . . . H76 H 1.0949 0.9336 0.2223 0.063 Uiso 1 1 calc R . C77 C 1.0290(10) 1.0385(9) 0.2487(10) 0.072(5) Uani 1 1 d . . . H77 H 1.0622 1.0847 0.2061 0.086 Uiso 1 1 calc R . C78 C 0.9605(9) 1.0596(9) 0.3061(9) 0.056(4) Uani 1 1 d . . . H78 H 0.9496 1.1205 0.3034 0.068 Uiso 1 1 calc R . C79 C 0.9099(8) 0.9940(8) 0.3653(8) 0.048(3) Uani 1 1 d . . . H79 H 0.8656 1.0095 0.4041 0.058 Uiso 1 1 calc R . C80 C 0.9228(7) 0.9040(8) 0.3694(7) 0.035(3) Uani 1 1 d . . . 1000 _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 U1 0.0271(2) 0.02378(19) 0.0239(2) -0.01233(15) -0.00380(16) 0.00061(15)

U2 0.0269(2) 0.02145(19) 0.01957(19) - 0.00791(14) - 0.00305(15) 0.00001(15) $U3 \ 0.0266(2) \ 0.02206(19) \ 0.0240(2) \ -0.01108(15) \ -0.00123(16) \ -0.00083(15)$ U4 0.0266(2) 0.0246(2) 0.02002(19) -0.01048(15) -0.00203(15) -0.00121(15) $01 \ 0.038(4) \ 0.030(4) \ 0.023(4) \ -0.016(3) \ 0.001(3) \ 0.000(3)$ $02 \ 0.027(4) \ 0.033(4) \ 0.040(4) \ -0.023(3) \ -0.003(3) \ -0.003(3)$ 03 0.025(4) 0.020(3) 0.031(4) -0.012(3) -0.005(3) 0.007(3) 04 0.037(4) 0.029(4) 0.015(3) -0.010(3) -0.006(3) 0.002(3) 05 0.036(4) 0.028(4) 0.028(4) -0.007(3) -0.013(3) 0.002(3) 06 0.034(4) 0.019(3) 0.038(4) -0.012(3) -0.012(3) -0.002(3) 07 0.035(4) 0.022(4) 0.021(4) -0.007(3) -0.008(3) 0.002(3) 08 0.020(3) 0.020(3) 0.019(3) -0.007(3) -0.007(3) 0.006(3) 09 0.029(4) 0.028(4) 0.033(4) -0.018(3) -0.004(3) 0.001(3) 010 0.039(4) 0.030(4) 0.030(4) -0.017(3) -0.006(3) 0.002(3) 011 0.028(4) 0.022(4) 0.028(4) -0.011(3) -0.002(3) -0.003(3) 012 0.025(4) 0.029(4) 0.047(5) -0.022(3) -0.002(3) -0.007(3) 013 0.039(4) 0.025(4) 0.024(4) -0.009(3) -0.012(3) 0.000(3) 014 0.031(4) 0.030(4) 0.018(3) -0.010(3) -0.001(3) -0.001(3) 015 0.026(4) 0.023(3) 0.027(4) -0.016(3) -0.007(3) 0.002(3) 016 0.033(4) 0.030(4) 0.040(4) -0.021(3) 0.000(3) -0.005(3) N1 0.029(5) 0.024(4) 0.040(5) -0.017(4) -0.008(4) 0.003(4) N2 0.038(5) 0.033(5) 0.031(5) -0.021(4) -0.012(4) 0.007(4)

M2 (<i>n n</i>	1220	5)	Δ	<u>م</u>	AC.	4٦	Δ	<u>م</u>	21	1	<u> </u>	Δ	Δ1	7	(1)		<u>م</u>	ወወወ	(1)	6	ወወወ	(1)	
11.5		520			02	<u> </u>	-		02	5	::::	,				1	<u>, </u>		900	1	<u>,</u>				
N4 (y.0)32(5)	0.	02	5(4	4)	0.	02	1((4)) –	۰0.	00	99	(3)) (0.0	700	(4)	-0	.00	2(4	L)
N5 (0 0	1270	5)	0	٥2	21	4)	0	02	60	۲ ۲ ۲) _	0	00	19	(3)	٦.	-0	00	4(4٦	0	00	212	1)
115 0			27		02	<u> </u>	-		02	00	22	, 	0.	00			<u>,</u>	~ ~		-(<u> デノ</u>		.00	4 (7	
N6 (0.ע)25(5)	0.	02	1(4	4)	0.	03	1(5)) –	۰0.	01	0	(4,) (0.0	902	(4)	-0	.00	1(:	3)
N7 (0 0	0240	۲۵٦	0	٥2	4(4)	0	02	61	4) _	0	M 1	6	(3)	٦.	-0	00	20	4٦	_(0 0	01	(3)
117 0	9.0		2	<u>.</u>	02	- (.	02		23		<u>.</u>	01			Ś	0	.00	20	곳		0.0		
N8 (0.ע)34(5)	0.	02	5(4	4)	0.	02	4((4)) –	۰0.	00	99	(4,)	-0	.00	4(4)	-(0.0	03((4)
C1	0 0	0260	6)	0	٥2	7(5)	0	02	4(5) _	0	00)2	(1		0 (004	(4)	-0	00	6(4	5
			:	<u>.</u>	02			<u>.</u>	02				<u>.</u>	00		2	<u> </u>	· · ·	001	22	2、	0	.00		
C2 (y.0	146((1)	0.	03	7()	b)	0.	03	0(6)) –	•0.	01	./	(5,)	-0	. 00	5(5)	V	.00	3(5)
C3 (0 0	0300	6)	0	05	0(7)	0	03	4(6) _	0	01	5	(5))	-0	00	4(5)	-(0 0	050	(5)
			207	<u>.</u>	0,			<u>.</u>	0.0		2		<u>.</u>	01		2	<u> </u>	0		-	27	~	0.0	1 / 5	
C4 (y.0	128((6)	0.	04	3(()	0.	03	7($\langle I \rangle$) –	•0.	00)/((5,)	-0	. 00	3(5)	V	.00	1(5)
C5 (0.0	360	7)	0.	02	9(6)	0.	04	.9(7) _	0.	01	5	(5)) (0.0	000	(6)	0.0	000	(5)	
	0.C			Š.	<u>6</u>		-	<u>ہ</u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0	2		Š.	66	12		$\langle \rangle$	۰. ۱	000		ς	٠. م	000	200	
C6 (y.0	940(()	0.	02	0(5)	0.	02	8(6,) –	ω.	00	13	(4,) (0.0	Y W9	(5)	-0	.00	3(5)
C7 (0.0)42(7)	0.	01	9(5)	0.	03	8(6) _	0.	00	9	(4))	-0	00	1(5)	-(0.0	04((5)
	0.C		:-:	Š.	N 1	$\frac{1}{2}$	~	<u>ہ</u>	٥. ٦	0			Š.	00	5		<	Ň				•	۵.U	2 4 1	
00	y.0	14(5)	υ.	04	2(()	Ο.	05	ð (ŏ,) –	υ.	03	53	(0,)	-0	. 00	7(5)	U	.01	2(5)
C9 (0.0)26(6)	0.	04	0(7)	0.	07	6((9)) –	0.	03	32	(6))	-0	. 00	8(6)	-(0.0	03((5)
C10	6	010	100	\ <u>`</u>	<u> </u>	20	(7)	0	0	01	(1)	ו 1 \		<u>ہ</u>	6	10	, 0	<u>،</u> ر	0 0	20	(7	2	0	001	
CIO	υ.	040	10	ט נ		29	(I)	0	.0	191		[]]	. –	••••	04	40	(0	יי	y.u	00	(1))	-0.	001	
C11	0.	.026	6(7)) ().0	79	(10)))	0.	09	94((12))	-0).(059	9(9)	-0	.0	21	(7)) ()	.00)6(7)
C12	6	611	20		<u> </u>	E C	ros	៍ត	0	0.2	01	, 1 1 \	-	^	6	10	10	Ń	•	۸ <i>۱</i>	\mathcal{L}	ò	6	M 1/	
CIZ	υ.	044	0	ט נ		50	(0)	0	.0	92	i (I	[]]	_	••••	04	49	(0	. ر	-0.	04	2(0)	υ.	014	F(0)
C13	0.	026	6)6) (0.0	45	(7)	0	.0)56	5(8	3)	-0).()4(0()	6)	-(0.0	07	(5) (0.0	10((5)
C14	۵	010	17	٦ (6	12	ζź	0	0	10	vò	τĺ	_6	<u>م</u>	ารเ	٥Ì	ดว์	_(0	16	25	Ś	<u>0</u>	200	5
C14	0.	040				44	$\sum_{i=1}^{n}$	0	.0	40		2	-0		50			-(y.u	10	\mathcal{L}	<u>, </u>	0.0	200	5)
C15	0.	034	:(6) (0.0	56	(7)	0	.0	24	ł(6	5)	-0).()24	4(5)	-(0.0	10	(5)) (0.0	17((5)
C16	۵	033	6	5 6	6	лл	(7)	0	0	25	: ()	5)	_6	<u>م</u>)1.	7	5)	_(0	٧S	(5	5	<u>0</u>	M1	5)
C10	0.	052				11	(1)		.0	2.		<i>.</i> ,	-0		11		<u>,</u>		y. u	05	5		0.0		
C17	0.	040	(7)) (0.0	81	(10)))	0.	02	27((6)	_	·0.	02	29	(7)) (V.V	00	(5)) (0.0	15((1)
C18	0	037	(7) (0	52	(7)	0	0	123	26	5)	-6) (۵۵٬	4(5)	0	00	31	5)	0	00	2(6	5)
C10	<u>.</u>	0.00					~~	0		2.2		~	0		1					20	5	、 °.	.00		
C19	0.	023	6(6)) (0.0	45	(7)	0	.0	24	E(())	-0).0	11	1(5)	-(9. 0	02	(4)) (V.V	05((5)
C20	0.	037	'(6)) (0.0	32	(6)	0	.0	18	3(5	5)	-6).()1;	2.(4	4)	-(0.0	10	(4)) (0.0	090	(5)
C21	۰. ۱	ຄວດ				20		0				~~	6		1				0.0	<u> </u>	2	$\langle \cdot \rangle$	<u> </u>	00 (00 (
C2 I	υ.	020	6(6) (0.0	30	(0)	0	.0	133))	-0		11	S C	5)	-(v. v	04	(2)) ·	-0.	005	(4)
C22	0.	049	(8)) (0.(38	(7)	0	. 0	124	1(6	5)	0.	00)3	(5))	-0	. 00	6(5)	-(0.0	11((5)
C22	6	061	in	Ś	0	61	λ	0	0	21	\dot{i}	Ś	<u>۸</u>	6	17	í a'	Ś	Ň	00	۵ì	εŚ		<u>0</u> 0	111	7
C23	υ.	001	(9) 0		01	(9)	. 0	.0	121	. (0	<i>)</i>	υ.	00	1	(0	<u>ر</u>	-0	. 00	0(0)	-(0.0	14(()
C24	0.	106	$\mathbf{i}(1)$	3)	0.	03	9(8	()	0.	03	37((8)	0).(00	3()	6)	0	.00	2(8)	-(0.0	16((8)
C25	۵	070	$\dot{(1)}$	ก้	Δ	<u>م</u> 1	a če	Ś.	Δ	Δ5	50	ζα'ι		Δ	0	ng.	(5	<u>م</u>	0 0	Δ 5	(7	٦.	0	1 1 م	(6)
C2 J	0.	075		נש	υ.			יי	۰.	0.		(9)				00	<u> </u>	<i>,</i>	y.u	05	Σ	<u>,</u>	-0.		
C26	0.	045	(7)) (0.0	27	(6)	0	.0	137	'(7	7)	-0).(00	9(5)	-(9.0	03	(5)) (0.0	02((5)
C27	0	053	(8)) (0	16	(5)	0	0	137	11	5)	-6) ()1(00	5)	-(0 0	09	(6) .	-0	003	8(5)
C27	<u>.</u>	000				20		0		2	\sim	~	0		× 1 4					0.0		Ś	<u>.</u>	00-	
C28	0.	024	:(5) (0.0	26	(5)	0	.0	30)(8))	-0).()1(V (4	4)	-(V.V	02	(4)) ·	-0.	00/	(4)
C29	0	021	(5) (0	21	(5)	0	0	152		7)	-6) ()17	7(5)	-(0 0	15	(5) (0 0	080	(4)
605	<u>.</u>	021								2			0							22		$\langle \rangle$	0.0		
C30	0.	033	6(6) (0.0	45	(7)	0	.0	36)())	-0).(20	b()	5)	-(9. 0	02	(5)) (V.V	05((5)
C31	0.	027	'(6)) (0.0	51	(7)	0	.0	36	5(6	5)	-6).()2.7	7()	6)	0	. 00	2.(5)	0	. 00	1(5	5)
C 2 2	٥. ١	ຄວດ	ic		5	12	\dot{c}	Ň		20	\sim	5	Ň		5	1	<u>ر</u>	Ŭ,		ົ້	<u>с</u> г	٠Ť	٠. ٥	ົ້	
C32	υ.	020	0)0) (42	(0)	0	.0	020		57	-0		12.	тÇ	י כ	-(y.u	03	()	· ر	-0.	002	(5)
C33	0.	028	6)) ().0	28	(5)	0	.0	30)(6	5)	-0).()14	4(4	4)	-(0.0	07	(5)) (0.0	05((4)
C 2 A	Δ	M25	ich	ה ר	5	26	Ì	0	•	22	ì	Ś	6	<u>م</u> ۱	12:	zè	5		0 0	10	25	Ś	<u> </u>	ຄົດ	
C54	υ.	023				50	(0)	0	.0	22		,	-0		14.	JC.	5)	-(y.u	TO	()	יי	0.0		4)
C35	0.	026	6)6) ().0	25	(5)	0	.0	23	3(5	5)	-0).(00	9(4	4)	0	.00	2(4)	-(0.0	11((4)
C36	۵	020	16) (0	28	(6)	0	0	120	A C P	5	-6) ()19	81	5)	0	00	00	5)	_(0 0	<u>88</u>	5)
230	0.	023				50		0		2.2			0		о т (57	U.	.00		5)	、 '	0.0		
C37	0.	021	.(6) (0.0	52	(7)	0	.0	24	F(;))	-0).(11	9(5)	-(V.V	02	(4)) ·	-0.	002	2(5)
C38	0.	018	3(5)) (0.0	32	(6)	0	.0	2.5	56	5)	-6).(00	8(4	4)	0	. 00	3(4)	-(0.0	04((4)
C20	۰. ۱	01	20			10		~ ~		5		-<			11		~	Ŭ,	0	ົ້	- / ·	`	۰. ت م	~ ~ `	
C39	υ.	021	.(0) (10	(\mathbf{b})	0	.0	2.2	.(:))	-0		11	v (4)	-(y.v	02	(4))	-0.	002	(4)
C40	0.	023	(5)) ().0	21	(5)	0	.0	19)(5	5)	-0).(00	3(4	4)	-(0.0	02	(4)) (0.0	03((4)
C / 1	۵	M31	in	ה ה		20	Ìaí	0	0	22	ìì	Ś	_6	<u>م</u> ۱	۱1.	7È	۸Ś	۵	00	٥٢	5)	(<u> </u>	610	
C41	υ.	054				29	(0)	0	.0	20		,	-0) T I	<u>'</u> ('	4)	U	. 00	ωţ	5)		0.0	04(4)
C42	0.	033	6(6) (0.0	27	(6)	0	.0	42	2(7	7)	-0).()19	9(5)	-(0.0	04	(5)) (0.0	09((5)
C43	۵	038	(7) (0	22	(5)	0	0	128	216	5)	-6) ()00	91	5)	-(0 0	96	(5) (0 0	<u>n</u> 01	5)
	0.	0.00				22		0					0				57		y. u	00		<u>'</u>	0.0		
C44	0.	041	.(7,) (0.0	26	(6)	0	.0	947	'(1	()	-0).()1	7 (l	5)	-(V.V	05	(6) ·	-0.	003	3(5)
C45	0	032	(6)) (0.0	39	(6)	0	. 0	36)(6	5)	-6) . ()2.	1(5)	0	00	1(5)	-(0.0	070	(5)
C 1 C	۰. ۱	0.0	20			20		0		20		~	~		11	2	4	Ŭ,		<u> </u>	25	``	<u> </u>	0 A -	
C46	υ.	025	(0) (0.0	20	(3)	0	.0	30))	-0	.0	11	2(4	4)	-(y.v	٥ð	()) ·	-0.	007	(4)
C47	0.	029	(6)) (0.0	32	(6)	0	.0	36)(6	5)	-6).()17	7(5)	0	. 00	1(5)	-(0.0	02((5)
C10	<u> </u>	021	(F	5 6	<u> </u>	27	(5)	5		21	in	Ś		۰. ۱.	11	۲ì	1	ñ	00	1	1	•	600	0/	i)
C40	υ.	νL	C)	ט נ		41	(\mathbf{y})	U	. 0	וכי	<u> </u>	<i>,</i> ,	-0	0.0	ν T (4J	U		тÇ	4)	U.		3(4	EJ
C49	0.	029	6)) (0.0	28	(5)	0	.0	25	6(5	5)	-0).()13	3(4	4)	-(V.0	11	(4)) (0.0	09((4)
C 5 0	0	028	(7) () ()	za	(ค)	0	0	126	ii	5)	_^	<u>م</u> ()1'	$2\dot{i}$	۶Ĵ	_(0 0	07	(5) (0 0	04 (5
C - 1	<u> </u>	0.00				20		0	.0	20		~	0		· ± 4		~	~`	~ ~ ~	0'	2	· .	0.0 0 ^	0 - (0	
C21	0.	W42	(1)	ه ر	0.0	٥ð	(6)	0	.0	25))	-0	0.0	11:	5()	V	. 00	9(5)	-(v.V	v2 (<u>)</u>
C52	0.	042	(7) (0.0	31	(6)	0	.0	33	3(6	5)	-6).()1:	2(5)	0	. 00	4(5)	0	.00	3(5	5)
(5)	Ń.	622	(F	Ś	<u> </u>	26	(2)	5	- 0	20	$\tilde{\mathbf{x}}$	5		۰. ۱.	110	a	5	ñ	00	$\overline{\zeta}$	ñ	Ĩ.	ດັດ	NF /	í)
C33	υ.	043		ه ر		20	(0)	U	. 0	43		<i>.</i> ,	-0	0.0	ν Τ :	3()	5)	U		26	キノ	-(v .v	w) (4J
C54	0.	028	6)) ().0	31	(6)	0	.0	35	6)(6	5)	-0).(08	8(5)	0	.01	5(5)	-(V.0	07((5)
C 5 5	0	041	(7) () ()	22	رَ ² ک	0	0	1 2 1	11	5	_6) ()1:	٦Ì	<u>4</u> ٦	_(0 0	07	(5) (0 0	05/	5
255	Ο.	5 1-1		, u			$\langle J \rangle$	U	. 0	51		~	0		· ± .	- (·	·)	,				, '	5.0	3.7 (

C56 0.037(7) 0.025(6) 0.030(6) -0.005(4) 0.000(5) -0.003(5)
(57 0.028(6) 0.034(6) 0.052(8) -0.008(5) -0.008(6) -0.005(5) (58 0.046(7) 0.027(6) 0.027(6) 0.003(4) -0.011(5) -0.010(5)
$C59 \ 0.043(7) \ 0.018(5) \ 0.032(6) \ -0.005(4) \ -0.009(5) \ -0.002(5)$
C60 0.025(6) 0.022(5) 0.030(6) -0.006(4) 0.000(4) -0.010(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$(62 \ 0.034(7) \ 0.051(7) \ 0.042(7) - 0.028(6) - 0.016(5) \ 0.013(5)$ (63 0 026(6) 0 088(10) 0 050(8) -0 046(7) -0 013(6) 0 008(6)
$C64 \ 0.038(7) \ 0.088(10) \ 0.045(8) \ -0.047(7) \ -0.013(6) \ 0.007(7)$
C65 0.032(6) 0.043(6) 0.025(6) -0.018(5) 0.005(5) -0.004(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$(67 \ 0.030(6) \ 0.013(5) \ 0.019(5) -0.001(4) \ 0.004(4) -0.001(4)$ $(68 \ 0.035(6) \ 0.030(6) \ 0.024(5) -0.015(4) -0.007(5) \ 0.001(5)$
C69 0.042(7) 0.015(5) 0.046(7) -0.014(5) -0.010(5) 0.013(5)
C70 0.048(8) 0.033(7) 0.057(8) -0.025(6) -0.019(6) 0.018(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C72 0.024(6) 0.037(6) 0.033(6) -0.009(5) -0.011(5) 0.000(5) C73 0.041(7) 0.030(6) 0.019(5) -0.011(4) -0.005(5) 0.003(5)
C74 0.023(6) 0.038(6) 0.032(6) -0.014(5) 0.008(5) -0.012(5)
C75 0.039(7) 0.032(6) 0.050(8) -0.016(5) 0.005(6) -0.010(5)
C76 0.041(8) 0.050(8) 0.064(9) -0.022(7) 0.006(7) -0.013(6)
C// 0.086(12) 0.042(8) 0.083(11) -0.032(8) 0.034(9) -0.033(8) C78 0.066(10) 0.038(7) 0.067(10) -0.031(7) 0.012(8) -0.012(7)
$(79 \ 0.050(8) \ 0.036(7) \ 0.056(8) \ -0.021(6) \ 0.012(8) \ -0.020(6)$
C80 0.025(6) 0.044(7) 0.040(7) -0.021(5) 0.000(5) -0.007(5)
and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;
1
geom bond atom site label 1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2 geom_bond_nubl_flag
U1 01 1.769(7) . ?
U1 02 1.774(7) . ?
U1 03 2.233(7) . ? U1 04 2 387(6) 2
U1 04 2.387(0). ?
U1 N1 2.540(8) . ?
U1 N2 2.540(8) . ?
UI U2 3.880/(14) . ? U2 05 1 779(7) ?
U2 06 1.784(7) . ?
U2 07 2.217(6) . ?
U2 U8 2.400(6). ? U2 04 2.475(6) ?
U2 N4 2.495(8) . ?
U2 N3 2.546(7) . ?
U3 09 1.771(7) . ?
US 010 $1.7/3(7)$. ? U3 012 $2.202(6)$. ?
U3 011 2.389(7) . ?

	013) 2	.491(6) .	:
U3	N6	2.	535(8) . ?	
U3	N 5	2.	560(8) . ?	
U3	U4	3.	8718(19) .	?
U4	013	31	.779(7) .	?
U4	014	11	.784(6).	?
Ū4	016	5 2	.207(7)	?
Ū4	01	5 2	.392(7)	?
114	011	1 2	445(6)	7
114	N7	2	512(7) 7	•
114	N8	2.	512(7)	
07	C1	1	324(3).	2
03	C1	1 A	2E6(11).	: 2
04	C20	ע ע 1 1		י ר
07		L 1		? 7
08	C40	ע יי	1 270(11)	· ` `
011		11 20	1.370(11)	• ?
012	2 66	00	1.335(12)	• ?
015	6 C6	51	1.360(11)	. ?
016	5 C8	30	1.299(12)	. ?
N1	C7	1.	298(13).	?
N1	C8	1.	406(13).	?
N2	C14	11	.273(13) .	?
N2	C13	31	.456(14) .	?
N3	C27	71	.302(12) .	?
N3	C28	31	.410(12) .	?
N4	C34	11	.289(12) .	?
N4	C33	31	.450(12) .	?
N5	C47	7 1	.269(12) .	?
N5	C48	31	.438(12)	?
N6	C54	1 1	.277(13)	7
N6	C53	1 1	434(13)	7
N7	CJ.	1		
	CGT	71	205(12)	2
N7	C67	7 <u>1</u> 71	.295(12).	? ?
N7	C67 C68	71 31 11	.295(12) . .432(12) .	? ? 2
N7 N8	C67 C68 C74	7 1 3 1 4 1	.295(12) . .432(12) . .298(12) .	? ? ?
N7 N8 N8	C67 C68 C74 C73	$\begin{array}{ccc} 7 & 1 \\ 3 & 1 \\ 4 & 1 \\ 3 & 1 \\ 3 & 1 \\ 1 \end{array}$.295(12) . .432(12) . .298(12) . .431(12) .	? ? ? ?
N7 N8 N8 C1	C67 C68 C74 C73 C2	$\begin{array}{cccc} 7 & 1 \\ 3 & 1 \\ 4 & 1 \\ 3 & 1 \\ 1 \\ 1 \\ 1 \end{array}$.295(12) . .432(12) . .298(12) . .431(12) . 411(15) .	? ? ? ?
N7 N8 N8 C1 C1	C67 C68 C74 C73 C2 C2 C6	$\begin{array}{cccc} 7 & 1 \\ 3 & 1 \\ 4 & 1 \\ 3 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) .	? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2	C67 C68 C74 C72 C2 C2 C6 C3	$7 1 \\ 3 1 \\ 4 1 \\ 3 1 \\ 1 . \\ 1 . \\ 1 . \\ 2 . $.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) .	? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2	C67 C68 C74 C73 C2 C2 C6 C3 H2	7 1 3 1 4 1 3 1 1. 1. 0.	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . ?	? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3	C67 C68 C74 C73 C2 C6 C3 H2 C4	7 1 3 1 4 1 3 1 1. 1. 0. 1.	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . ? 376(15) .	? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3	C67 C68 C74 C7 C2 C2 C6 C3 H2 C4 H3	7 1 3 1 4 1 3 1 1. 1. 0. 1. 0.	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 .	? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3 C4	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5	7 1 3 1 4 1 3 1 1. 1. 0. 1. 0. 1.	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) .	? ? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3 C3 C4 C4	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4	7 1 3 1 4 1 3 1 1. 1. 0. 1. 0.	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . ?	? ? ? ? ? ?
N7 N8 C1 C1 C2 C2 C3 C3 C3 C4 C4 C5	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6	7 1 3 1 4 1 1 1 1 . 1 . 0 . 1 . 0 . 1 . 1 .	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) .	? ? ? ? ? ?
N7 N8 C1 C1 C2 C2 C3 C3 C3 C4 C5 C5	C67 C68 C74 C73 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5	7 1 3 1 4 1 3 1 1. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . ?	? ? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3 C3 C4 C4 C5 C5 C6	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C5 H4 C6 H5 C7	7 1 3 1 4 1 3 1 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) .	? ? ? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 C6 C7	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C5 H4 C6 H5 C7 H7	7 1 3 1 4 1 1 1 1 . 1 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . ?	? ? ? ? ? ? ?
N7 N8 N8 C1 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 C6 C7 C8	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1	7 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) .	? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 C6 C7 C8 C8	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C2 C7 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	7 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) . 395(15) .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 C1 C2 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C8 C9	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C7 C1 C7 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	7 1 1 3 1 3 1 4 1 3 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) . .395(15) . .375(17) .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C6 C7 C8 C9 C9	C67 C68 C74 C72 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C10 H9	7 1 1 3 1 1 4 1 3 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) . .395(15) . .375(17) .	? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C6 C7 C8 C9 C9 C1	C67 C68 C74 C2 C2 C6 C3 H2 C4 H3 C5 H4 C5 H4 C5 H4 C7 C1 C7 C1 C7 C2 C6 C3 H2 C4 H3 C5 H2 C7 C6 C7 C2 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	$egin{array}{cccccccccccccccccccccccccccccccccccc$.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) . .395(15) . .375(17) . 9500 . 1.361(19)	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C1 C9 C1 C1 C2 C9 C1 C2 C2 C3 C3 C4 C5 C5 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	C67 C68 C74 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C9 C1 C9 C1 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . 432(16) . 9500 . .395(16) . .395(15) . .375(17) . 9500 . 1.361(19) 0.9500 ?	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C10 C11 C11 C2 C2 C3 C10 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C67 C68 C74 C2 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C9 C1 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 . 1 406(19)	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C11	C67 C68 C74 C2 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C10 H9 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C11	C67 C68 C74 C2 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C10 H9 C11 C11 C11 C11 C11 C11 C11 C11 C11 C1	7 1 1 3 1 1 3 1 1 1 . 1 . 1 . 1 . 1 . 1 .	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(16) . .395(16) . .395(17) . 9500 . 1.361(19) 0.9500 . 1.406(19) 0.9500 . 1.403(15) .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C11 C12 C11 C12 C11 C12 C11 C12 C11 C12 C11 C12 C12	C67 C68 C74 C2 C6 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 . 1.406(19) 0.9500 .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C12 C12 C12 C12 C12 C12 C12 C12 C12	C67 C68 C74 C2 C6 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 . 1.406(19) 0.9500 . 1.403(15) 0.9500 .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C12 C12 C12 C12 C12 C12 C12 C12 C12	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 3 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 . 1.406(19) 0.9500 . 1.403(15) 0.9500 . 1.441(16) .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C12 C12 C12 C12 C14 C12 C12 C14 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 3 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1	.295(12) . .432(12) . .298(12) . .431(12) . 411(15) . 405(14) . 376(15) . 9500 . 376(15) . 9500 . 372(16) . 9500 . 418(15) . 9500 . .395(16) . 395(16) . 395(16) . 395(16) . 395(15) . .375(17) . 9500 . 1.361(19) 0.9500 . 1.406(19) 0.9500 . 1.403(15) 0.9500 . 1.441(16) 0.9500 .	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
N7 N8 N8 C1 C2 C2 C3 C4 C4 C5 C5 C6 C7 C8 C9 C10 C11 C12 C12 C14 C12 C14 C12 C14 C12 C14 C12 C12 C14 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	C67 C68 C74 C7 C2 C6 C3 H2 C4 H3 C5 H4 C6 H5 C7 H7 C1 C9 C1 H1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	7 1 3 1 1 1 1 1 0 1	.295(12). .432(12). .298(12). .431(12). 411(15). 405(14). 376(15). 9500. 372(16). 9500. 372(16). 9500. 418(15). 9500. 395(16). 395(16). 395(16). 395(15). .375(17). 9500. 1.361(19) 0.9500. 1.406(19) 0.9500. 1.403(15) 0.9500. 1.403(15) 0.9500. 1.402(14) 1.402(14)	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

C16	C17	1,375(17)	2
C10		1.3/3(1/).	•
C10	HIO	0.9500 . ?	_
C17	C18	1.39/(1/) .	?
C17	H17	0.9500 . ?	
C18	C19	1 377(14)	7
C10	U10		•
C10	п10 620		~
C19	C20	1.383(15) .	?
C19	H19	0.9500 . ?	
C21	C22	1.401(14).	?
C21	C26	1 423(14)	2
C21	C20	1.723(17).	ว
CZZ	C23	1.3/1(15).	?
C22	H22	0.9500 . ?	
C23	C24	1.400(18).	?
C23	H23	0.9500 ?	
C24	C25	1 371(18)	2
C24		1.3/1(10).	:
C24	HZ4	0.9500 . ?	
C25	C26	1.401(15) .	?
C25	H25	0.9500 . ?	
C26	C27	1 436(15)	2
C27	1127		•
C27	HZ/	0.9500 . ?	_
C28	C29	1.406(13) .	2
C28	C33	1.409(14) .	?
C29	C30	1 377(14)	7
C20	1120		•
C29	П29 624		~
C30	C31	1.385(15).	?
C30	H30	0.9500 . ?	
C31	C32	1.396(13).	?
C 3 1	U21		•
C 2 2	C 2 2	1 207(12)	n
C32	C33	1.38/(13).	?
C32	H32	0.9500 . ?	
C34	C35	1.453(13) .	?
C34	H34	0 9500 7	
C2F	626	$1 40 \Gamma (14)$	2
C35	C30	1.405(14).	: 2
C35	C40	1.421(13).	?
C36	C37	1.367(13).	?
C36	H36	0.9500 . ?	
C37	C38	1 409(14)	2
C 77			•
C37	H37	0.9500 . ?	_
C38	C39	1.358(13) .	?
C38	H38	0.9500 . ?	
C39	C40	1.404(12)	7
C20	U20		•
C 3 3	642	0.3300. :	2
C41	C42	1.3/8(14) .	{
C41	C46	1.406(13) .	?
C42	C43	1.372(14) .	?
C42	H42	0.9500 ?	
C/3	CAA	1 306(14)	2
C4J	C44 U42	1.390(14).	•
C43	H43	0.9500 . ?	
C44	C45	1.383(15).	?
C44	H44	0.9500 . ?	
C45	C46	1 413(14)	7
C15			•
C4J	1140		2
C46	C47	1.45/(14) .	?
C47	H47	0.9500 . ?	
C48	C53	1.368(14) .	?
C48	C49	1.390(13)	?
C10	C 5 M	1 388(14)	. 2
C49		1.300(14) .	:
C49	н49	0.9500 . ?	_
C50	C51	1.384(16) .	?
C50	H50	0.9500 . ?	
C51	C52	1,383(16)	7
C) I	C) L	1.303(10) .	•

C51 H51 0.9500 . ? C52 C53 1.398(14) . ? C52 H52 0.9500 . ? C54 C55 1.441(15) . ? C54 H54 0.9500 . ? C55 C60 1.432(14) . ? C55 C56 1.419(15) . ? C56 C57 1.383(15) . ? C56 H56 0.9500 . ? C57 C58 1.398(16) . ? C57 H57 0.9500 . ? C58 C59 1.379(15) . ? C58 H58 0.9500 . ? C59 C60 1.389(14) . ? C59 C60 1.389(14) . ? C59 H59 0.9500 . ? C61 C66 1.417(13) . ? C62 C63 1.374(15) . ? C62 C63 1.374(15) . ? C63 C64 1.388(15) . ? C63 C64 1.388(15) . ? C63 H63 0.9500 . ? C64 C65 1.367(15) . ? C64 H64 0.9500 . ? C65 C66 1.401(14) . ? C65 H65 0.9500 . ? C66 C67 1.461(13) . ? C67 H67 0.9500 . ? C68 C69 1.399(13) . ? C68 C73 1.397(14) . ? C69 H69 0.9500 . ? C70 C71 1.371(16) . ? C70 H70 0.9500 . ? C71 C72 1.377(15) . ? C71 H71 0.9500 . ? C72 C73 1.375(14) . ? C72 H72 0.9500 . ? C74 C75 1.462(14) . ? C75 C76 1.408(16) . ? C75 C76 1.408(16) . ? C76 C77 1.366(17) . ? C76 C77 1.366(17) . ?
C75 C76 1.408(16) . ? C76 C77 1.366(17) . ? C76 H76 0.9500 . ? C77 C78 1.420(18) . ? C77 H77 0.9500 . ? C78 C79 1.369(16) . ? C78 H78 0.9500 . ? C79 C80 1.405(15) . ? C79 H79 0.9500 . ?
<pre>loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 01 U1 02 175.9(3) ? 01 U1 03 91.4(3) ? 02 U1 03 90.8(3) ?</pre>

01	U1	04	89		3 ((3)					?		
02	U1	04	90		3 ((3)					?		
03	U1	04	15	2	. 9)(2)					?	
01	U1	08	94		1((3)					?		
02	U1	08	89	. (6(3)					?		
03	U1	08	83		2 (2	í					?		
04	Ū1	08	69)] '	7 (2	í					?		
01	Ū1	N1	83		2.0	3	í					?		
02	111	N1	94		30	2	í		•		•	?		
03	111	N1	70		70	د ح	ś		•		•	?		
04	111	N1	13	6	2	$\tilde{\boldsymbol{\rho}}$	2	٦	•		•	•	7	
01	111	N1	15	3	6	$\frac{1}{3}$	2	Ś		•		•	?	
01	111	N2	87	5	۰. ۵	2	٦ ١	'		•		?	•	
01	111	M2	80		0 (0 /	2	Ś		•		•	2		
02		N2 N2	12	1	5	ر ۲	2	٢	•		•	:	2	
03			10	4) (~~	د ۲	J		•		• •	4	
04			14	· ·	1	2	ر د	`	•		•	4	2	
U0			14	2	• •) (~~	2	J		•		• •	?	
NI	UI	NZ	03	-	9(3	Ś	、	•		•	?	~	
01	UI	02	10	15)(2)		÷		•	?	
02	UI	02	/6	••	1(2	Ś		:		•	?		~
03	U1	02	11	6	٠t	31	(1	6)		•	•	?
04	U1	U2	37	-	83	8(1	4)		•	•		?
08	U1	U2	36	• •	51	(1	4)		•	•	1	?
N1	U1	U2	16	7	.4	19	(1	9)		•	•	?
N2	U1	U2	10	7	. 2	28	(1	9)		•	•	?
05	U2	06	17	5	. 5	5(3)		•		•	?	
05	U2	07	89		3 ((3)					?		
06	U2	07	92		4((3)					?		
05	U2	08	86		7 ((3)					?		
06	U2	08	93		7 (3)					?		
07	U2	08	15	2	. 1	(2)					?	
05	U2	04	96		2 ('3)	1				?		
06	U2	04	88		1(3	í					?		
07	U2	04	83		7(2	í					?		
08	U2	04	69		3 (2	í					?		
05	112	N4	86		4(2	í		-		•	?		
06	112	N4	89		50	2	ś		•		•	?		
07	112	N4	13	5	6	$\tilde{\mathbf{x}}$	2	٦	•		•	•	7	
07	112	NA	72	5	 २ <i>१</i>	· ?	ĥ	'		•		?	•	
00	112	NJ NJ	11	1	20	21	ן כ	٢	•		•	•	2	
04	112	N4 N2	27	; -) ('2	2	J		•		っ	4	
05	112	CM CM	01	•	/ (0 /	2	Ś		•		•	י ר		
00	02	CII	20		90	ີ ເ	Ś		•		•	י ר		
07	02	CII	10		9(<u>،</u> ۲	2	`	•		•	4	2	
00			10	0	• 4	E (2	Ś		•		•	? ר	
04	02	N 3	10	4	• •	5(2	J		•		• -	?	
N4	UZ	N3	64	-	1(3	Ś	、	•		•	?	~	
05	UZ	UI	10	15	-4	F (2)		•		•	?	
06	02	01	11	•	4(2)		•		•	?		_
07	02	01	11	8	.4	4	(1	6)		•	•	2
08	U2	U1	37	•	63	3(1	5)		•	•		?
04	U2	U1	36		26	6(1	5)		•	•		?
N4	U2	U1	10	5	. 8	35	(1	8)		•	•	?
N3	U2	U1	16	3	.4	ł0	(1	8)		•	•	?
09	U3	010	1	7	5.	4	(3)		•		1	?
09	U3	012	8	8	.6	5(3)		•		•	?	
010) U3	8 01	2	9	3.	0	(3)				Ĩ	?
09	U3	011	8	5	.4	ł(3)					?	
010) U3	8 01	1	9	4.	8	(3)				1	?
012	2 U3	8 01	1	1	56	5.	Š	(2)				?
09	U3	015	9	7	.7	7(3)					?	
010) U3	3 01	5	8	6.	7	(3)				ſ	?
							1		-					

012 U3 015 89.0(2) . . ? 011 U3 015 69.2(2) . . ? 09 U3 N6 87.4(3) . . ? 010 U3 N6 89.1(3) . . ? 012 U3 N6 69.5(3) . . ? 011 U3 N6 132.9(2) . . ? 015 U3 N6 157.8(2) . . ? 09 U3 N5 89.0(3) . . ? 010 U3 N5 86.8(3) . . ? 012 U3 N5 132.5(3) . . ? 011 U3 N5 70.4(2) . . ? 015 U3 N5 138.2(2) . . ? N6 U3 N5 63.0(3) . . ? 09 U3 U4 105.7(2) . . ? ..? 010 U3 U4 77.0(2) 012 U3 U4 124.35(18) . . ? 011 U3 U4 37.28(15) . . ? 015 U3 U4 36.66(15) . . N6 U3 U4 160.3(2) . . ? ? ? N5 U3 U4 101.85(19) . .

 013
 U4
 014
 175.5(3)
 .
 ?

 013
 U4
 016
 89.8(3)
 .
 ?

 013
 U4
 016
 92.4(3)
 .
 ?

 014
 U4
 016
 92.4(3)
 .
 ?

 013
 U4
 015
 88.5(3)
 .
 ?

 013
 U4
 015
 91.3(3)
 .
 ?

 014
 U4
 015
 91.3(3)
 .
 ?

 016
 U4
 015
 151.4(2)
 .
 ?

 016 04 013 131.4(2) . . 013 04 011 95.6(3) . . ? 014 04 011 88.5(3) . . ? 016 04 011 81.9(2) . . ? 015 04 011 69.9(2) . . ? 013 04 N7 87.4(3) . . ?

 013
 04
 N7
 87.4(3)
 .
 ?

 014
 U4
 N7
 88.3(3)
 .
 ?

 016
 U4
 N7
 134.9(3)
 .
 ?

 015
 U4
 N7
 73.5(2)
 .
 ?

 011
 U4
 N7
 143.2(2)
 .
 ?

 013
 U4
 N8
 88.1(3)
 .
 ?

 014 U4 N8 89.0(3) . . ? 016 U4 N8 70.7(3) . . ? O15 U4 N8 137.7(2) . . O11 U4 N8 152.4(2) . . ? N7 U4 N8 64.2(3) . . ? 013 U4 U3 106.7(2) . . ? 014 U4 U3 75.7(2) . . ? 016 U4 U3 115.97(18) . . ? 015 U4 U3 38.45(14) . . ? 011 U4 U3 36.28(15) . . ? N7 U4 U3 107.90(18) . . ? N8 U4 U3 163.29(18) . . ? C1 O3 U1 127.8(6) . . ? C1 03 U1 127.8(6) . . ? C20 04 U1 127.6(5) . . ? C20 04 U2 122.6(6) . . ? U1 04 U2 105.9(2) . . ? C21 07 U2 135.8(6) . . ? C40 08 U2 123.9(5) . . ? C40 08 U1 125.5(5) . . ? U2 08 U1 105.9(2) . . ? C41 011 U3 125.4(6) . . ? ? C41 011 U4 125.0(6) . . ? U3 011 U4 106.4(2) . . ? C60 012 U3 130.4(6) . . ? C61 015 U4 124.2(6) . . ?

C61 015 U3 126.7(6) ?
$U4 \ 015 \ U3 \ 104.9(2) \ . \ . \ ?$
(80 010 04 132.1(7) ?
$(7 \text{ N1 C0 119.1(9)} \cdot \cdot$
(8 N1 II1 117 4(6) ?
C14 N2 C13 118.0(9) ?
C14 N2 U1 126.8(8) ?
C13 N2 U1 115.0(7) ?
C27 N3 C28 118.6(8) ?
C27 N3 U2 124.6(7) ?
C28 N3 U2 116.3(6) ?
C34 N4 C33 117.1(8) ?
C34 N4 U2 125.6(6) ?
(33 N4 U2 IIb.3(6)
$(47 \text{ NS} (40 \text{ 119.0}(0) \dots))$
$(47 \text{ N5} 05 127.2(7) \cdot \cdot$
C_{40} NG C_{53} $121.6(9)$?
C54 N6 U3 125.6(7) ?
C53 N6 U3 112.8(6) ?
C67 N7 C68 117.9(8) ?
C67 N7 U4 124.9(6) ?
C68 N7 U4 116.6(6) ?
C74 N8 C73 116.1(9) ?
C74 N8 U4 125.1(7) ?
$(73 \text{ N8 } 04 \text{ II} 7.6(6) \dots 7$
03 C1 C2 120.2(9) ?
(2) (1)
$(3 \ (2 \ (1 \ 120, 3(10)) + 7))$
C3 C2 H2 119.8 ?
C1 C2 H2 119.8 ?
C2 C3 C4 122.4(11) ?
C2 C3 H3 118.8 ?
C4 C3 H3 118.8 ?
C5 C4 C3 117.4(11) ?
(5 (4 H4 121.3 ?)
$(3 \ (4 \ H4 \ 121.5 \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
$C_4 C_5 C_6 125.1(11)$
$C_{4} C_{5} H_{5} H_{5$
C1 C6 C7 123.3(10) ?
C1 C6 C5 117.9(11) ?
C7 C6 C5 118.7(10) ?
N1 C7 C6 126.2(9) ?
N1 C7 H7 116.9 ?
C6 C7 H7 116.9 ?
C13 C8 N1 116.9(10) ?
$(13 \ (8 \ (9 \ 120 \ 5(11)) \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
$(10 \ (9 \ (22.0(11)) \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
C10 C9 H9 120 4 7
C8 C9 H9 120.4 ?
C11 C10 C9 120.9(12) ?
C11 C10 H10 119.6 . ?
C9 C10 H10 119.6 ?
C10 C11 C12 121.9(12) ?
C10 C11 H11 119.0 ?
C12 C11 H11 119.0 ?
$(13 \ (12 \ (11 \ 11/.3(13) \ . \ . \ ?))$

C13	C12	H12	121	.4		?		
C11	C12	H12	121	Δ		2		
	12	C12 1	120	2/1		•	2	,
	.15		120.	2(1		• •	· _ '	
C8 (.13	N2 11	16.9	(10))).	•	?	
C12	C13	N2 1	122.	8(1	1)		. ?	•
N2 (1/	C15 1	27	$a\hat{i}1$	ره ا		2	,
	11		10	v 2(1		· ·	•	
NZ C	.14	HI4 J	110.	Ψ.	•	<u>؛</u>		
C15	C14	H14	116	.0	• •	?		
C16	C15	C20	119	.4((11)) .		?
C16	C15	C14	114	10	10)		7
C20	C15	C14	126	5	10)	•	•	ว
		C14	120	.) (•	•	: 2
C17	C16	C15	171	.2((11)	•	•	?
C17	C16	H16	119	.4		?		
C15	C16	H16	119	.4		?		
C16	C17	C18	118	7((11))		7
C16	C17	U17	120	6	,	'. ?	•	•
C10	C17	1117	120	.0	• •			
C18	C17	HI/	120	. 6	• •	:		
C19	C18	C17	120	.7((12)) .		?
C19	C18	H18	119	.7		?		
C17	C18	H18	119	7		7		
C20	C10	C10	121	ີ ເ	· · ·			2
C20	C19		141	.00	(11)	' :	•	:
C20	C19	H19	119	. 2	• •	• •		
C18	C19	H19	119	.2		?		
04 0	20	C19 1	121.	9(9)).		?	
04 (20	C15 1	19.	9(1	0)		7	,
C10	C20	C15	118	10	â	•		,
07 0	C20	C1J	110	- 1 (<u> </u>	• •	· ·	
07 0	_21		121.	2(5	<i>ו</i> ויייי	•	{	
07 (21	C26	121.	4(9	<i>i</i>).	•	?	
C22	C21	C26	117	.4((10)) .		?
C23	C22	C21	121	.60	(11)) .		?
C23	C22	H22	119	2	· ·	7		
C21	C22	U22	110	2	• •	· ·		
C21	C22	П <u></u> С 2 4	113	. 4		1		2
CZZ	C23	C24	121	. 50	12)	' .	•	?
C22	C23	H23	119	.3	• •	?		
C24	C23	H23	119	.3		?		
C25	C24	C23	117	.70	(11)) .		?
C25	C24	H24	121	. 2		?		
C23	C24	U21	121	2	• •	2		
C2.5	C24	626	121	. 4		:		2
C24	C25	C20	122		12)	' :	•	?
C24	C25	H25	118	./	• •	- ?		
C26	C25	H25	118	.7		?		
C25	C26	C21	119	.30	(11)) .		?
C25	C26	C27	118	.4(10)) .		?
C21	C26	C27	121	90	ζąς΄	-	7	,
N2 (220	$C_{2}C_{1}$	121		(<i>J</i>)	• •	· .	
	.41		140.	2(5	<i>י</i> עי		4	
N3 (.27	HZ/ J	115.	9.	•	<i>:</i>		
C26	C27	H27	115	.9		?		
N3 (28	C29 1	124.	9(9)).		?	
N3 (2.8	C33 1	16.	6(8	3).		?	
C29	C28	633	118	4	ία) Ι	-	2	,
C20	C20	C 2 2	120	((10)			2
C30	C29		140		10)	' :	•	<i>:</i>
C30	C29	H29	119	./	• •	?		
C28	C29	H29	119	.7		?		
C29	C30	C31	120	.20	(9)		. ?	•
C29	C30	H30	119	.9		?		
C 3 1	050	HRO	119	ģ		2		
C 3 V	C21	(22)	120	. J	ייי. 10			2
C 20	C31		110	.00	10)	' :	•	:
C30	C31	H31	119	. 6	• •	1		
C32	C31	H31	119	.6		?		
C33	C32	C31	119	.1((10)			?
C33	C32	H32	120	.5		?		

C31 C32 H32 120.5 . . ? C32 C33 C28 120.9(9) . . ? C32 C33 N4 123.1(9) . . ? C28 C33 N4 116.0(9) . . ? N4 C34 C35 127.2(9) . . ? N4 C34 H34 116.4 . . ? C35 C34 H34 116.4 . . ? C36 C35 C40 119.1(9) . . ? C36 C35 C34 116.4(8) . . ? C40 C35 C34 124.5(9) . . ? C37 C36 C35 123.4(9) . . ? C37 C36 H36 118.3 . . ? C35 C36 H36 118.3 . . ? C35 C36 H36 118.3 . . ? C36 C37 C38 116.5(9) . . ? C36 C37 H37 121.8 . . ? C38 C37 H37 121.8 . . ? C39 C38 C37 122.1(9) . . ? C39 C38 H38 119.0 . . ? C37 C38 H38 119.0 . . ? C38 C39 C40 121.9(9) . . ? C38 C39 H39 119.0 . . ? C40 C39 H39 119.0 . . ? C40 C39 H39 119.0 . . ? O8 C40 C39 121.2(8) . . ? O8 C40 C35 121.7(8) . . ? C39 C40 C35 117.0(9) . . ? O11 C41 C42 121.5(8) . . ? O11 C41 C46 119.7(9) . . ? C42 C41 C46 118.8(9) . . ? C43 C42 C41 122.0(10) . . ? C43 C42 H42 119.0 . . ? C41 C42 H42 119.0 . . ? C42 C43 C44 120.6(11) . . ? C42 C43 H43 119.7 . . ? C44 C43 H43 119.7 . . ? C45 C44 C43 118.3(10) . . ? C45 C44 H44 120.9 . . ? C43 C44 H44 120.9 . . ? C44 C45 C46 121.6(9) . . ? C44 C45 H45 119.2 . . ? C46 C45 H45 119.2 . . ? C41 C46 C45 118.5(10) . . ? C41 C46 C47 125.2(9) . . ? C45 C46 C47 116.2(9) . . ? N5 C47 C46 126.4(9) . . ? N5 C47 H47 116.8 . . ? C46 C47 H47 116.8 . . ? C53 C48 C49 120.7(10) . . ? C53 C48 N5 116.3(9) . . ? C49 C48 N5 123.0(9) . . ? C50 C49 C48 119.5(10) . . ? C50 C49 H49 120.3 . . ? C48 C49 H49 120.3 . . ? C49 C50 C51 119.8(10) . . ? C49 C50 H50 120.1 . . ? C51 C50 H50 120.1 . . ? C52 C51 C50 120.4(11) . . ? C52 C51 H51 119.8 . . ? C50 C51 H51 119.8 . . ? C51 C52 C53 119.4(11) . . ?

C51 C52 H52 120.3 . . ? C53 C52 H52 120.3 . . ? Appendix B.

C48	C53	C52	1199(10) 7
C 10	255	252	
C48	C53	N6 .	117.3(9) ?
C52	C53	N6 1	122.7(9) ?
NG (51 0	755 1	125 4(10) 2
NOC			125.4(10) :
N6 (254 H	154 I	117.3 ?
C55	C54	H54	117.3 ?
CC0	CEE	CEC	1100(10) 7
COU	C22	C20	119.0(10) ?
C60	C55	C54	121.6(10) ?
C56	C55	C54	119.2(9) ?
CE 7	CEG	CEE	110.9(10) 7
C37	C20	C22	119.6(10) ?
C57	C56	H56	120.1 ?
C55	C56	H56	120.1 ?
056	C57	628	120 8(11) 2
C30	CJ/	C 30	120.0(11) :
C56	C57	H57	119.6 ?
C58	C57	H57	119.6 ?
C59	C58	C57	119 6(11) 7
	C 50		
C39	C28	нэө	120.2 ?
C57	C58	H58	120.2 ?
60	C59	C58	121 8(10) 7
	C 5 0		
00	C28	нээ	119.1 ?
C58	C59	H59	119.1 ?
012	C60	C59	121 5(9) 7
010	CC0		110 9(0) 7
012	Cou	C22	119.8(9) ?
C59	C60	C55	118.7(10) ?
015	C61	C62	120.0(9) ?
015	C61	C66	122 4(0) 2
015	COI	000	122.4(9) !
C62	C61	C66	117.6(9) ?
C63	C62	C61	121.1(10) ?
663	C62	H62	110 5 7
C0J	C02	1102	119.5 :
C01	C62	H62	119.5 ?
C64	C63	C62	122.2(11) ?
C64	C63	н63	118 9 7
601	C03	1105	110.0 2
C02	C03	H03	110.9 ?
C65	C64	C63	117.1(11) ?
C65	C64	H64	121.5 ?
C62	C61	1161	101 5 7
COS	C04	п04	
C64	C65	C66	122.9(10) ?
C64	C65	H65	118.5 ?
666	C65	H65	118 5 7
	C05	CC 1	
C65	C66	C01	119.1(9) ?
C65	C66	C67	115.9(8) ?
C61	C66	C67	125.0(9)
N7 (-67 (-66 1	127 7(0) 2
N7 (127.7(9)
N/ C	267 H	167	116.1 ?
C66	C67	H67	116.1 ?
669	C68	C73	1187(10) 2
C03	C00	C7J	
C69	C68	N/	$123.6(9) \cdot \cdot ?$
C73	C68	N7 1	117.6(8) ?
668	C69	C70	1194(11) 7
600	C60		
000	C09	H09	120.5 ?
C70	C69	H69	120.3 ?
C71	C70	C69	121.7(10) ?
C71	C70	1170	110 1 2
	C70		
C69	C70	H70	119.1 ?
C70	C71	C72	118.8(11) ?
C70	C71	H71	120 6 2
C70	C71	1171	
C/2	C/1	п/1	120.0 ?
C73	C72	C71	121.2(10) ?
C73	C72	H72	119.4 ?
C71	C72	H72	119.4 ?
C72	C72		$120 0(0) \qquad 2$
C/2	C/3	600	120.0(9) ?

C72 C73 N8 124.5(10) . . ? C68 C73 N8 115.4(9) . . ? N8 C74 C75 124.3(9) . . ? N8 C74 H74 117.8 . . ? C75 C74 H74 117.8 . . ? C80 C75 C76 119.5(10) . . ? C80 C75 C74 122.7(10) . . ? C76 C75 C74 117.6(10) . . ?

 C76
 C75
 C74
 117.6(10)
 . . ?

 C77
 C76
 C75
 121.7(12)
 . ?

 C77
 C76
 H76
 119.2
 . ?

 C75
 C76
 H76
 119.2
 . ?

 C76
 C77
 C78
 118.1(12)
 . ?

 C76
 C77
 H77
 121.0
 . ?

 C78
 C77
 C78
 121.2(11)
 . ?

 C79 C78 H78 119.4 . ? C77 C78 H78 119.4 . . ? C78 C79 C80 120.7(11) . . ? C78 C79 H79 119.6 . . ? C80 C79 H79 119.6 . . ? 016 C80 C75 121.9(10) . . ? 016 C80 C79 119.6(10) . . ? C75 C80 C79 118.5(10) . . ? _diffrn_measured_fraction_theta_max _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _refine_diff_density_max 1.726

_refine_diff_density_min -2.211

0.963

27.48

0.963

_refine_diff_density_rms 0.223

Appendix C

$\label{eq:crystallographic Information of } [U^{VI}O_2(saloph)]_2 \cdot 0.5 CH_2 Cl_2$

data_shelxl

<pre>_audit_creation_method _chemical_name_systematic ; 2</pre>	SHELXL-97
; _chemical_name_common _chemical_melting_point _chemical_formula_moiety _chemical_formula_sum 'C40.50 H29 Cl N4 O8 U2' _chemical_formula_weight	? ? ? 1211.19
<pre>loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Table 'H' 'H' 0.0000 0.0000 'International Tables Vol C Table 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Table 'N' 'N' 0.0061 0.0033 'International Tables Vol C Table 'O' 'O' 0.0106 0.0060 'International Tables Vol C Table 'O' 'O' 0.0106 0.0060 'International Tables Vol C Table 'U' 'U' -9.6767 9.6646</pre>	es 4.2.6.8 and 6.1.1.4' es 4.2.6.8 and 6.1.1.4' es 4.2.6.8 and 6.1.1.4' es 4.2.6.8 and 6.1.1.4' es 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting _symmetry_space_group_name_H-M	triclinic 'P -1'
<pre>loopsymmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'</pre>	

_cell_length_a 15.717(5)_cell_length_b 15.993(7)_cell_length_c 17.619(5) _cell_angle_alpha 67.45(3)_cell_angle_beta 77.99(3) _cell_angle_gamma 81.66(3) _cell_volume 3990(2) _cell_formula_units_Z 4 _cell_measurement_temperature 93(2) _cell_measurement_reflns_used 35412 _cell_measurement_theta_min 3.0 _cell_measurement_theta_max 27.5 'block' _exptl_crystal_description _exptl_crystal_colour 'red' _exptl_crystal_size_max 0.16 _exptl_crystal_size_mid 0.11 _exptl_crystal_size_min 0.06 _exptl_crystal_density_meas 2 _exptl_crystal_density_diffrn 2.016 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2260 _exptl_absorpt_coefficient_mu 8.230 multi-scan _exptl_absorpt_correction_type _exptl_absorpt_correction_T_min 0.3526 _exptl_absorpt_correction_T_max 0.6380 _exptl_absorpt_process_details ; Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan. _diffrn_ambient_temperature 93(2) 0.71075 _diffrn_radiation_wavelength _diffrn_radiation_type MoK¥a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite 'Rigaku RAXIS-RAPID' _diffrn_measurement_device_type _diffrn_measurement_method ¥₩ _diffrn_detector_area_resol_mean 10.00 _diffrn_reflns_number 37695 _diffrn_reflns_av_R_equivalents 0.0695 _diffrn_reflns_av_sigmaI/netI 0.0811 _diffrn_reflns_limit_h_min -20 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -20 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min -22 _diffrn_reflns_limit_l_max 22 _diffrn_reflns_theta_min 3.01 _diffrn_reflns_theta_max 27.48 _reflns_number_total 17850 _reflns_number_gt 12487 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'PROCESS-AUTO' _computing_cell_refinement 'PROCESS-AUTO' _computing_data_reduction 'CrystalStructure' _computing_structure_solution 'DIRDIF99 (PATTY)' 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement

_computing_molecular_graphics ? ? _computing_publication_material _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ÷ _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[¥s²(Fo²)+(0.0396P)²+60.3343P] where P=(Fo²+2Fc²)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens aeom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? 17850 _refine_ls_number_reflns _refine_ls_number_parameters 1001 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0978 0.0594 _refine_ls_R_factor_gt _refine_ls_wR_factor_ref 0.1297 _refine_ls_wR_factor_gt 0.1161 _refine_ls_goodness_of_fit_ref 1.031 _refine_ls_restrained_S_all 1.031 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group U1 U 0.21155(3) 0.32362(3) 0.45371(2) 0.02468(10) Uani 1 1 d . . . U2 U 0.25921(3) 0.06733(3) 0.49028(2) 0.02631(10) Uani 1 1 d . . . U3 U 0.92726(3) 0.80556(3) -0.03910(2) 0.02528(10) Uani 1 1 d . . . U4 U 0.69478(3) 0.76228(3) 0.08847(2) 0.02426(10) Uani 1 1 d . . . Cl1 Cl 0.6139(5) 0.4816(5) 0.4182(5) 0.133(2) Uani 1 1 d . . . Cl2 Cl 0.6739(4) 0.3577(4) 0.5695(4) 0.1093(19) Uani 1 1 d . . 01 0 0.3146(5) 0.3708(5) 0.4166(4) 0.0295(17) Uani 1 1 d . . 02 0 0.1074(5) 0.2803(5) 0.4977(5) 0.0314(17) Uani 1 1 d . 03 0 0.2876(5) 0.1883(5) 0.5357(4) 0.0252(16) Uani 1 1 d . 04 0 0.1663(5) 0.4138(5) 0.3357(4) 0.0331(18) Uani 1 1 d . . .

05 0 0.3684(5) 0.0555(5) 0.4424(4) 0.0310(17) Uani 1 1 d . . . 06 0 0.1480(5) 0.0747(5) 0.5339(5) 0.0331(18) Uani 1 1 d . . . 07 0 0.2451(5) 0.2139(5) 0.3823(4) 0.0279(17) Uani 1 1 d . . . 08 0 0.2897(5) -0.0242(5) 0.6158(5) 0.0335(18) Uani 1 1 d . . . 09 0 0.9974(4) 0.7198(5) 0.0215(5) 0.0284(16) Uani 1 1 d . . . 010 0 0.8605(5) 0.8885(5) -0.1057(4) 0.0280(16) Uani 1 1 d . . 011 0 1.0091(5) 0.9067(5) -0.0395(5) 0.0309(17) Uani 1 1 d . . . 012 0 0.8207(5) 0.6949(5) 0.0187(4) 0.0238(15) Uani 1 1 d . . . 013 0 0.7076(4) 0.6888(5) 0.1917(4) 0.0251(16) Uani 1 1 d . . . 014 0 0.6779(4) 0.8406(5) -0.0114(4) 0.0264(16) Uani 1 1 d . . . 015 0 0.6269(5) 0.6565(5) 0.0767(4) 0.0331(18) Uani 1 1 d . . . 016 0 0.8235(4) 0.8309(5) 0.0795(4) 0.0257(16) Uani 1 1 d . . . N1 N 0.2194(6) 0.3410(6) 0.5875(6) 0.029(2) Uani 1 1 d . . . N2 N 0.1487(6) 0.4743(6) 0.4665(5) 0.031(2) Uani 1 1 d . . . N3 N 0.2131(7) 0.0426(7) 0.3710(7) 0.039(2) Uani 1 1 d . . N4 N 0.2573(6) -0.0964(7) 0.5048(6) 0.037(2) Uani 1 1 d . . . N5 N 0.9384(5) 0.7167(6) -0.1337(5) 0.0237(19) Uani 1 1 d . . N6 N 1.0515(6) 0.8345(6) -0.1614(6) 0.029(2) Uani 1 1 d . . N7 N 0.5338(6) 0.7785(6) 0.1441(5) 0.027(2) Uani 1 1 d . . . N8 N 0.6472(6) 0.8882(6) 0.1448(5) 0.0257(19) Uani 1 1 d . . . C1 C 0.3576(7) 0.1876(7) 0.5702(6) 0.029(2) Uani 1 1 d . . . C2 C 0.4293(7) 0.1262(7) 0.5674(6) 0.027(2) Uani 1 1 d . . . H2 H 0.4302 0.0856 0.5395 0.033 Uiso 1 1 calc R . C3 C 0.4996(8) 0.1234(8) 0.6048(7) 0.034(3) Uani 1 1 d . . . H3 H 0.5477 0.0807 0.6024 0.041 Uiso 1 1 calc R . C4 C 0.5010(7) 0.1828(8) 0.6465(6) 0.028(2) Uani 1 1 d . . . H4 H 0.5499 0.1819 0.6706 0.034 Uiso 1 1 calc R . C5 C 0.4285(7) 0.2424(8) 0.6509(7) 0.030(2) Uani 1 1 d . . . H5 H 0.4276 0.2818 0.6800 0.036 Uiso 1 1 calc R . C6 C 0.3564(7) 0.2464(8) 0.6137(7) 0.031(2) Uani 1 1 d . . . C7 C 0.2852(7) 0.3108(7) 0.6271(6) 0.027(2) Uani 1 1 d . . . H7 H 0.2870 0.3333 0.6693 0.033 Uiso 1 1 calc R . C8 C 0.1555(7) 0.4031(7) 0.6134(6) 0.027(2) Uani 1 1 d . . . C9 C 0.1316(8) 0.3958(9) 0.6952(8) 0.039(3) Uani 1 1 d . . . H9 H 0.1563 0.3474 0.7378 0.047 Uiso 1 1 calc R . C10 C 0.0717(8) 0.4593(9) 0.7148(8) 0.042(3) Uani 1 1 d . . . H10 H 0.0554 0.4548 0.7712 0.051 Uiso 1 1 calc R C11 C 0.0343(8) 0.5307(9) 0.6522(8) 0.043(3) Uani 1 1 d . . . H11 H -0.0056 0.5754 0.6659 0.052 Uiso 1 1 calc R C12 C 0.0558(8) 0.5355(8) 0.5712(7) 0.035(3) Uani 1 1 d . . . H12 H 0.0280 0.5817 0.5294 0.042 Uiso 1 1 calc R . C13 C 0.1194(8) 0.4721(8) 0.5493(7) 0.034(3) Uani 1 1 d . . . C14 C 0.1500(8) 0.5524(8) 0.4060(8) 0.038(3) Uani 1 1 d . . . H14 H 0.1378 0.6043 0.4213 0.045 Uiso 1 1 calc R . C15 C 0.1679(8) 0.5696(8) 0.3178(7) 0.038(3) Uani 1 1 d . . . C16 C 0.1743(10) 0.6597(9) 0.2640(8) 0.052(4) Uani 1 1 d . . . H16 H 0.1712 0.7062 0.2858 0.062 Uiso 1 1 calc R . C17 C 0.1853(11) 0.6813(11) 0.1788(9) 0.065(4) Uani 1 1 d . . . H17 H 0.1899 0.7428 0.1422 0.078 Uiso 1 1 calc R . C18 C 0.1897(10) 0.6147(10) 0.1468(8) 0.057(4) Uani 1 1 d . . . H18 H 0.1956 0.6305 0.0883 0.068 Uiso 1 1 calc R . C19 C 0.1856(9) 0.5240(9) 0.1993(7) 0.045(3) Uani 1 1 d . . . H19 H 0.1909 0.4785 0.1761 0.054 Uiso 1 1 calc R . . C20 C 0.1739(8) 0.4991(8) 0.2853(7) 0.035(3) Uani 1 1 d . . . C21 C 0.2750(7) 0.2357(8) 0.3002(6) 0.030(3) Uani 1 1 d . . . C22 C 0.3155(7) 0.3167(9) 0.2548(7) 0.036(3) Uani 1 1 d . . . H22 H 0.3252 0.3532 0.2835 0.044 Uiso 1 1 calc R . C23 C 0.3417(8) 0.3454(10) 0.1690(7) 0.043(3) Uani 1 1 d . . . H23 H 0.3704 0.4000 0.1400 0.052 Uiso 1 1 calc R . C24 C 0.3261(9) 0.2946(12) 0.1261(8) 0.055(4) Uani 1 1 d . . . H24 H 0.3427 0.3147 0.0672 0.066 Uiso 1 1 calc R . .

C25 C 0.2867(8) 0.2152(10) 0.1686(8) 0.044(4) Uani 1 1 d . . . H25 H 0.2749 0.1812 0.1384 0.052 Uiso 1 1 calc R . C26 C 0.2627(8) 0.1817(10) 0.2573(8) 0.043(3) Uani 1 1 d . . . C27 C 0.2264(9) 0.0954(11) 0.2931(9) 0.050(4) Uani 1 1 d . . . H27 H 0.2099 0.0741 0.2552 0.060 Uiso 1 1 calc R . C28 C 0.1757(8) -0.0420(10) 0.3928(9) 0.048(3) Uani 1 1 d . C29 C 0.1164(10) -0.0537(11) 0.3496(11) 0.063(5) Uani 1 1 d . . . H29 H 0.0993 -0.0047 0.3028 0.075 Uiso 1 1 calc R . C30 C 0.0819(10) -0.1386(12) 0.3760(13) 0.076(6) Uani 1 1 d . . . H30 H 0.0415 -0.1468 0.3465 0.091 Uiso 1 1 calc R . C31 C 0.1059(9) -0.2099(12) 0.4437(12) 0.069(5) Uani 1 1 d . . . H31 H 0.0819 -0.2668 0.4611 0.083 Uiso 1 1 calc R . . C32 C 0.1649(8) -0.1987(9) 0.4863(10) 0.050(4) Uani 1 1 d . . . H32 H 0.1814 -0.2477 0.5334 0.060 Uiso 1 1 calc R . C33 C 0.2009(7) -0.1140(9) 0.4597(9) 0.041(3) Uani 1 1 d . . C34 C 0.3101(8) -0.1609(9) 0.5432(8) 0.041(3) Uani 1 1 d . . . H34 H 0.3111 -0.2172 0.5364 0.049 Uiso 1 1 calc R . C35 C 0.3676(8) -0.1568(7) 0.5953(7) 0.035(3) Uani 1 1 d . . . C36 C 0.4381(8) -0.2216(8) 0.6125(8) 0.039(3) Uani 1 1 d . . . H36 H 0.4469 -0.2674 0.5892 0.047 Uiso 1 1 calc R . C37 C 0.4951(8) -0.2213(9) 0.6620(8) 0.043(3) Uani 1 1 d . . . H37 H 0.5446 -0.2636 0.6699 0.052 Uiso 1 1 calc R . . C38 C 0.4785(8) -0.1584(8) 0.7000(8) 0.039(3) Uani 1 1 d . . . H38 H 0.5157 -0.1594 0.7365 0.047 Uiso 1 1 calc R . C39 C 0.4097(8) -0.0947(8) 0.6864(7) 0.040(3) Uani 1 1 d . . . H39 H 0.3995 -0.0532 0.7146 0.048 Uiso 1 1 calc R . C40 C 0.3537(7) -0.0890(7) 0.6319(6) 0.029(2) Uani 1 1 d . . . C41 C 0.8401(7) 0.6055(8) 0.0349(7) 0.030(2) Uani 1 1 d . . . C42 C 0.8141(8) 0.5404(8) 0.1144(7) 0.037(3) Uani 1 1 d . . . H42 H 0.7853 0.5598 0.1585 0.044 Uiso 1 1 calc R . C43 C 0.8301(8) 0.4487(8) 0.1290(8) 0.041(3) Uani 1 1 d . . . H43 H 0.8131 0.4060 0.1835 0.049 Uiso 1 1 calc R . C44 C 0.8711(8) 0.4171(8) 0.0650(7) 0.037(3) Uani 1 1 d . . . H44 H 0.8802 0.3540 0.0751 0.045 Uiso 1 1 calc R . C45 C 0.8975(7) 0.4801(7) -0.0121(7) 0.029(2) Uani 1 1 d . . . H45 H 0.9261 0.4595 -0.0555 0.035 Uiso 1 1 calc R . C46 C 0.8842(7) 0.5733(8) -0.0298(7) 0.029(2) Uani 1 1 d . . . C47 C 0.9208(7) 0.6332(8) -0.1122(6) 0.028(2) Uani 1 1 d . . H47 H 0.9331 0.6087 -0.1550 0.034 Uiso 1 1 calc R C48 C 0.9714(7) 0.7652(7) -0.2198(6) 0.025(2) Uani 1 1 d . . . C49 C 0.9451(7) 0.7558(8) -0.2861(6) 0.032(3) Uani 1 1 d . . . H49 H 0.9058 0.7118 -0.2770 0.038 Uiso 1 1 calc R C50 C 0.9780(8) 0.8131(9) -0.3673(7) 0.038(3) Uani 1 1 d . . . H50 H 0.9610 0.8068 -0.4134 0.046 Uiso 1 1 calc R . C51 C 1.0343(8) 0.8783(9) -0.3819(7) 0.042(3) Uani 1 1 d . . . H51 H 1.0535 0.9186 -0.4370 0.051 Uiso 1 1 calc R . C52 C 1.0621(8) 0.8832(8) -0.3142(7) 0.036(3) Uani 1 1 d . . . H52 H 1.1034 0.9253 -0.3233 0.043 Uiso 1 1 calc R . C53 C 1.0308(7) 0.8281(7) -0.2334(6) 0.027(2) Uani 1 1 d . . . C54 C 1.1314(7) 0.8527(8) -0.1615(7) 0.037(3) Uani 1 1 d . . . H54 H 1.1751 0.8545 -0.2082 0.045 Uiso 1 1 calc R C55 C 1.1549(7) 0.8698(8) -0.0946(7) 0.034(3) Uani 1 1 d . . . C56 C 1.2446(8) 0.8639(8) -0.0898(8) 0.042(3) Uani 1 1 d . . . H56 H 1.2865 0.8444 -0.1281 0.051 Uiso 1 1 calc R C57 C 1.2728(8) 0.8858(9) -0.0305(8) 0.042(3) Uani 1 1 d . . . H57 H 1.3326 0.8766 -0.0250 0.051 Uiso 1 1 calc R . C58 C 1.2125(8) 0.9211(8) 0.0200(7) 0.036(3) Uani 1 1 d . . . H58 H 1.2319 0.9408 0.0576 0.043 Uiso 1 1 calc R . . C59 C 1.1253(7) 0.9288(8) 0.0176(7) 0.031(2) Uani 1 1 d . . . H59 H 1.0854 0.9532 0.0537 0.037 Uiso 1 1 calc R . . C60 C 1.0940(8) 0.9011(7) -0.0372(7) 0.031(3) Uani 1 1 d . . .

C61 C 0.5762(7) 0.5945(7) 0.1339(7) 0.029(2) Uani 1 1 d . . . C62 C 0.5917(9) 0.5032(9) 0.1401(8) 0.042(3) Uani 1 1 d . . . H62 H 0.6371 0.4867 0.1024 0.050 Uiso 1 1 calc R . C63 C 0.5408(9) 0.4378(9) 0.2009(8) 0.048(3) Uani 1 1 d . . . H63 H 0.5515 0.3765 0.2045 0.057 Uiso 1 1 calc R . C64 C 0.4737(10) 0.4606(9) 0.2572(10) 0.056(4) Uani 1 1 d . . . H64 H 0.4407 0.4148 0.3003 0.067 Uiso 1 1 calc R . C65 C 0.4562(9) 0.5502(9) 0.2495(8) 0.049(3) Uani 1 1 d . . . H65 H 0.4081 0.5662 0.2853 0.059 Uiso 1 1 calc R . C66 C 0.5083(7) 0.6192(8) 0.1894(7) 0.032(3) Uani 1 1 d . . . C67 C 0.4850(7) 0.7111(8) 0.1844(7) 0.034(3) Uani 1 1 d . . . H67 H 0.4293 0.7236 0.2129 0.040 Uiso 1 1 calc R . C68 C 0.4993(7) 0.8664(8) 0.1427(6) 0.029(2) Uani 1 1 d . . . C69 C 0.4119(7) 0.8962(9) 0.1406(7) 0.038(3) Uani 1 1 d . . . H69 H 0.3724 0.8584 0.1375 0.046 Uiso 1 1 calc R . C70 C 0.3827(7) 0.9810(9) 0.1430(7) 0.039(3) Uani 1 1 d . . . H70 H 0.3227 1.0008 0.1438 0.046 Uiso 1 1 calc R . . C71 C 0.4413(8) 1.0370(8) 0.1443(8) 0.040(3) Uani 1 1 d . . . H71 H 0.4212 1.0960 0.1442 0.047 Uiso 1 1 calc R . C72 C 0.5289(8) 1.0084(8) 0.1457(7) 0.033(3) Uani 1 1 d . . . H72 H 0.5682 1.0469 0.1478 0.040 Uiso 1 1 calc R . . C73 C 0.5585(7) 0.9226(7) 0.1438(6) 0.029(2) Uani 1 1 d . . . C74 C 0.6926(7) 0.9118(7) 0.1846(6) 0.027(2) Uani 1 1 d . . . H74 H 0.6631 0.9510 0.2123 0.033 Uiso 1 1 calc R . C75 C 0.7825(6) 0.8865(7) 0.1924(6) 0.024(2) Uani 1 1 d . . . C76 C 0.8101(8) 0.9049(8) 0.2557(7) 0.035(3) Uani 1 1 d . . . H76 H 0.7697 0.9342 0.2875 0.042 Uiso 1 1 calc R . C77 C 0.8939(8) 0.8814(12) 0.2725(8) 0.053(4) Uani 1 1 d . . . H77 H 0.9111 0.8928 0.3160 0.064 Uiso 1 1 calc R . C78 C 0.9523(8) 0.8409(12) 0.2244(9) 0.058(5) Uani 1 1 d . . . H78 H 1.0102 0.8244 0.2358 0.070 Uiso 1 1 calc R . C79 C 0.9305(8) 0.8234(9) 0.1609(7) 0.037(3) Uani 1 1 d . . . H79 H 0.9727 0.7955 0.1292 0.045 Uiso 1 1 calc R . C80 C 0.8468(7) 0.8464(8) 0.1432(6) 0.028(2) Uani 1 1 d . C81 C 0.6266(17) 0.4636(16) 0.5177(16) 0.118(9) Uani 1 1 d . . . H81A H 0.5686 0.4716 0.5502 0.141 Uiso 1 1 calc R . . H81B H 0.6630 0.5103 0.5156 0.141 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 U1 0.0282(2) 0.0230(2) 0.02132(19) -0.00611(16) -0.00871(16) 0.00384(16) $U2 \ 0.0275(2) \ 0.0255(2) \ 0.0271(2) \ -0.01133(17) \ -0.00740(16) \ 0.00352(16)$ $U3 \ 0.0271(2) \ 0.0229(2) \ 0.0251(2) \ -0.00895(16) \ -0.00523(16) \ 0.00230(16)$ U4 0.0272(2) 0.0243(2) 0.01979(18) -0.00665(16) -0.00649(15) 0.00257(16) Cl1 0.155(6) 0.118(6) 0.129(6) -0.041(5) -0.034(5) -0.020(5) Cl2 0.111(4) 0.085(4) 0.141(5) -0.055(4) -0.018(4) -0.002(3) 01 0.027(4) 0.036(4) 0.024(4) -0.009(3) -0.009(3) 0.006(3) 02 0.027(4) 0.031(4) 0.035(4) -0.013(4) -0.008(3) 0.008(3) 03 0.029(4) 0.025(4) 0.017(3) -0.005(3) -0.008(3) 0.007(3) 04 0.045(5) 0.029(4) 0.023(4) -0.006(3) -0.010(3) 0.001(4) 05 0.041(5) 0.032(4) 0.025(4) -0.015(3) -0.013(3) 0.002(4) 06 0.045(5) 0.026(4) 0.038(4) -0.018(4) -0.017(4) 0.003(4) 07 0.038(4) 0.029(4) 0.021(4) -0.017(3) -0.007(3) 0.009(3) 08 0.037(4) 0.029(4) 0.028(4) -0.007(3) -0.007(3) 0.010(3) 09 0.021(4) 0.028(4) 0.036(4) -0.012(3) -0.005(3) 0.001(3)

0.10 = 0.24(4) = 0.30(4) = 0.012(3) = 0.002(3) = 0.002(3)
011 0 0.021(1) 0.030(1) 0.030(1) 0.012(3) 0.002(3) 0.002(3)
$011 \ 0.031(4) \ 0.024(4) \ 0.040(4) \ -0.015(3) \ -0.009(3) \ 0.005(3)$
$012 \ 0.031(4) \ 0.019(4) \ 0.022(3) \ -0.012(3) \ 0.002(3) \ 0.001(3)$
013 $0.026(4)$ $0.028(4)$ $0.019(3)$ $-0.008(3)$ $-0.005(3)$ $0.005(3)$
$014 \ 0.025(4) \ 0.029(4) \ 0.022(4) \ -0.010(3) \ -0.001(3) \ 0.005(3)$
$015 \ 0.046(5) \ 0.025(4) \ 0.026(4) \ -0.007(3) \ -0.008(4) \ 0.003(4)$
0.16 = 0.22(4) = 0.30(4) = 0.024(4) = 0.010(3) = 0.000(3) = 0.002(3)
N1 0.030(5) 0.025(5) 0.032(5) -0.012(4) -0.009(4) 0.007(4)
N2 $0.040(5)$ $0.025(5)$ $0.029(5)$ $-0.010(4)$ $-0.014(4)$ $0.004(4)$
N3 0 038(6) 0 038(6) 0 045(6) $-0.021(5) -0.011(5) 0.007(5)$
N4 0.035(5) 0.034(6) 0.043(6) -0.020(5) 0.001(5) -0.002(4)
$N5 \ 0.027(4) \ 0.027(5) \ 0.023(4) \ -0.016(4) \ -0.005(4) \ 0.002(4)$
$N_{0} = 0.026(5) = 0.031(5) = 0.031(5) = 0.013(4) = 0.001(4) = 0.004(4)$
$ \begin{array}{c} \text{NO} & 0.020(3) & 0.031(3) & 0.031(3) & 0.013(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.010(4) & 0.001(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.010(4) & 0.001(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.010(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.001(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.010(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.001(4) & 0.001(4) & 0.001(4) \\ \text{NO} & 0.001(4$
N7 0.031(5) 0.027(5) 0.016(4) -0.003(4) -0.003(4) 0.003(4)
N8 $0.028(5)$ $0.023(5)$ $0.026(5)$ $-0.010(4)$ $-0.009(4)$ $0.006(4)$
$(1 \otimes 0.38)$ $(6) \otimes 0.27)$ $(6) \otimes 0.12)$ $(4) = 0 \otimes 0.2)$ $(4) \otimes 0.01)$ $(4) \otimes 0.06)$ (5)
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
$(2 \ 0.031(6) \ 0.024(6) \ 0.027(5) \ -0.007(4) \ -0.010(5) \ -0.001(5)$
$(3 \ 0.035(6) \ 0.033(7) \ 0.035(6) \ -0.012(5) \ -0.013(5) \ 0.003(5)$
$(4 \ 0 \ 022(5) \ 0 \ 037(6) \ 0 \ 027(5) \ -0 \ 014(5) \ -0 \ 005(4) \ 0 \ 001(5)$
(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$(5 \ 0.035(6) \ 0.027(6) \ 0.027(6) \ -0.009(5) \ -0.007(5) \ 0.000(5)$
(6, 0.030(6), 0.032(6), 0.030(6), -0.010(5), -0.011(5), 0.002(5))
(7, 0, 0, 21, (6), 0, 0, 0, 25, (5), 0, 0, 0, 0, (4), 0, 0, 0, 2, (5), (6), (6), (6), (6), (6), (6), (6), (6
$(8 \ 0.030(6) \ 0.028(6) \ 0.019(5) \ -0.009(4) \ 0.001(4) \ 0.004(5)$
(9, 0.034(6), 0.048(8), 0.037(7), -0.020(6), -0.010(5), 0.013(6))
(10, 0, 0.02) (7) $(0, 0.05)$ (8) $(0, 0.02)$ (7) $(0, 0.02)$ (6) $(0, 0.02)$ (6) $(0, 0.02)$ (6)
C11 0.039(7) 0.053(8) 0.044(7) -0.029(7) -0.005(6) 0.005(6)
$C12 \ 0.036(6) \ 0.025(6) \ 0.040(7) \ -0.005(5) \ -0.019(5) \ 0.005(5)$
(13, 0, 046(7), 0, 024(6), 0, 033(6), -0, 014(5), -0, 013(5), 0, 008(5))
$(14 \ 0.042(7) \ 0.021(6) \ 0.043(7) \ -0.005(5) \ -0.011(6) \ 0.006(5)$
$C15 \ 0.054(8) \ 0.022(6) \ 0.029(6) \ 0.001(5) \ -0.014(5) \ 0.004(5)$
$(16 \ 0 \ 078(10) \ 0 \ 027(7) \ 0 \ 039(7) \ -0 \ 004(6) \ -0 \ 005(7) \ -0 \ 002(7)$
(12, 0, 0, 0, 0, 1) $(12, 0, 0, 1)$ $(12, 0, 0, 0, 0, 1)$ $(12, 0, 0, 0, 1)$ $(12, 0, 0, 0, 1)$ $(12, 0, 0, 0, 1)$ $(12, 0, 0, 0, 1)$
$(17 \ 0.088(12) \ 0.051(10) \ 0.043(8) \ -0.005(7) \ -0.013(8) \ 0.000(9)$
$C18 \ 0.082(11) \ 0.049(9) \ 0.025(6) \ 0.004(6) \ -0.013(7) \ -0.001(8)$
(19, 0, 051(8), 0, 041(8), 0, 029(6), 0, 000(5), -0, 011(6), 0, 004(6), 0, 004(6), 0, 004(6), 0, 004(6), 0, 004(6), 0, 004(6), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$(20 \ 0.043(7) \ 0.029(6) \ 0.024(5) \ -0.003(5) \ -0.008(5) \ 0.010(5)$
$C21 \ 0.039(6) \ 0.040(7) \ 0.020(5) \ -0.023(5) \ -0.013(5) \ 0.017(5)$
(22, 0, 029(6), 0, 054(8), 0, 022(5), -0, 010(5), -0, 008(5), 0, 004(6), 004
(22, 0, 029(7), 0, 051(0), 0, 022(9), 0, 010(9), 0, 010(9), 0, 010(9)
(23 0.038(7) 0.056(9) 0.031(6) -0.012(6) -0.017(5) 0.016(6)
$C24 \ 0.045(8) \ 0.095(13) \ 0.022(6) \ -0.026(7) \ -0.010(6) \ 0.021(8)$
(25, 0, 044(7), 0, 064(9), 0, 034(7), -0, 037(7), -0, 018(6), 0, 032(7))
(2) (3)
(26 0.033(6) 0.001(9) 0.035(7) -0.026(6) -0.010(5) 0.029(6)
$(27 \ 0.051(8) \ 0.069(10) \ 0.050(8) \ -0.047(8) \ -0.025(7) \ 0.030(7)$
(28, 0, 039(7), 0, 054(9), 0, 070(9), -0, 047(8), -0, 013(7), 0, 009(6))
(20, 0, 0, 0, 0, 1) $(30, 0, 0, 0, 1)$ $(30, 0, 0, 0, 0, 1)$ $(30, 0, 0, 0, 0, 1)$ $(30, 0, 0, 0, 0, 0, 0, 1)$ $(30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
(230,004(10),0.003(11),0.090(12),-0.037(10),-0.042(9),0.025(8))
$C30 \ 0.047(9) \ 0.075(12) \ 0.152(18) \ -0.088(13) \ -0.036(11) \ 0.017(8)$
(31, 0.036(8), 0.063(11), 0.136(16), -0.063(12), -0.035(9), 0.012(7), 0.012(7)
(22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
(52 0.050(7) 0.058(8) 0.092(11) - 0.044(8) - 0.000(7) 0.001(8)
C33 0.022(6) 0.051(8) 0.061(8) -0.038(7) -0.004(6) 0.009(5)
(34, 0.038(7), 0.032(7), 0.047(7), -0.016(6), 0.003(6), 0.004(5)
(55 0.041(7) 0.010(5) 0.050(6) - 0.002(5) - 0.004(5) 0.005(5)
$(36 \ 0.041(7) \ 0.025(6) \ 0.046(7) \ -0.013(5) \ 0.003(6) \ -0.006(5)$
$(37 \ 0.037(7) \ 0.033(7) \ 0.048(8) - 0.003(6) - 0.007(6) \ 0.004(5)$
(22, 0, 0.4)
C38 0.042(7) 0.030(7) 0.041(7) -0.006(5) -0.014(6) 0.000(5)
C38 0.042(7) 0.030(7) 0.041(7) -0.006(5) -0.014(6) 0.000(5) C39 0.047(7) 0.032(7) 0.025(6) 0.003(5) -0.004(5) 0.003(6)
C38 $0.042(7)$ $0.030(7)$ $0.041(7)$ $-0.006(5)$ $-0.014(6)$ $0.000(5)$ C39 $0.047(7)$ $0.032(7)$ $0.025(6)$ $0.003(5)$ $-0.004(5)$ $0.003(6)$ C40 $0.035(6)$ $0.027(6)$ $0.022(5)$ $-0.009(4)$ $0.005(5)$ $-0.003(5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C38 0.042(7) 0.030(7) 0.041(7) -0.006(5) -0.014(6) 0.000(5) C39 0.047(7) 0.032(7) 0.025(6) 0.003(5) -0.004(5) 0.003(6) C40 0.035(6) 0.027(6) 0.022(5) -0.009(4) 0.005(5) -0.003(5) C41 0.028(6) 0.030(6) 0.034(6) -0.010(5) -0.013(5) 0.003(5) C42 0.044(7) 0.027(6) 0.036(6) -0.008(5) -0.011(5) 0.004(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C47	0.033(6)	$0.034(6) \ 0.025(5) \ -0.021(5) \ -0.006(5) \ 0.007(5)$
C48	0.025(5)	$0.029(6) \ 0.023(5) \ -0.013(4) \ -0.007(4) \ 0.009(4)$
C49	0.029(6)	$0.039(7) \ 0.026(5) \ -0.017(5) \ -0.006(5) \ 0.016(5)$
C50	0.041(7)	$0.042(7) \ 0.027(6) \ -0.012(5) \ -0.004(5) \ 0.001(6)$
C51	0.048(8)	$0.035(7) \ 0.029(6) \ -0.005(5) \ 0.006(6) \ 0.007(6)$
C52	0.039(7)	0.037(7) $0.031(6)$ $-0.018(5)$ $0.004(5)$ $0.001(5)$
C53	0.035(6)	$0.023(6) \ 0.023(5) \ -0.012(4) \ -0.002(5) \ 0.005(5)$
C54	0.029(6)	$0.040(7) \ 0.032(6) \ -0.008(5) \ 0.003(5) \ 0.001(5)$
C55	0.031(6)	$0.026(6) \ 0.043(7) \ -0.006(5) \ -0.016(5) \ -0.001(5)$
C56	0.030(6)	0.031(7) $0.048(7)$ $0.004(6)$ $-0.004(5)$ $0.001(5)$
C57	0.033(7)	$0.053(8) \ 0.038(7) \ -0.013(6) \ -0.010(6) \ -0.001(6)$
C58	0.050(7)	$0.026(6) \ 0.038(6) \ -0.011(5) \ -0.021(6) \ -0.004(5)$
C59	0.035(6)	$0.030(6) \ 0.029(6) \ -0.014(5) \ -0.008(5) \ 0.004(5)$
C60	0.040(7)	$0.016(5) \ 0.039(6) \ -0.011(5) \ -0.009(5) \ 0.003(5)$
C61	0.032(6)	$0.025(6) \ 0.027(5) \ -0.007(5) \ -0.003(5) \ -0.003(5)$
C62	0.051(8)	$0.038(7) \ 0.037(7) \ -0.016(6) \ 0.001(6) \ -0.006(6)$
C63	0.053(8)	$0.031(7) \ 0.055(8) \ -0.019(6) \ 0.019(7) \ -0.018(6)$
C64	0.067(10)	0.026(7) 0.067(10) -0.014(7) 0.009(8) -0.018(7)
C65	0.047(8)	$0.046(8) \ 0.044(8) \ -0.013(7) \ 0.004(6) \ -0.002(6)$
C66	0.030(6)	$0.035(7) \ 0.032(6) \ -0.012(5) \ -0.006(5) \ -0.005(5)$
C67	0.026(6)	$0.043(7) \ 0.036(6) \ -0.016(6) \ -0.014(5) \ 0.002(5)$
C68	0.031(6)	$0.033(6) \ 0.018(5) \ -0.005(5) \ -0.007(4) \ 0.006(5)$
C69	0.028(6)	$0.041(7) \ 0.043(7) \ -0.010(6) \ -0.012(5) \ 0.000(5)$
C70	0.025(6)	$0.055(8) \ 0.034(6) \ -0.022(6) \ -0.002(5) \ 0.015(6)$
C71	0.044(7)	$0.017(6) \ 0.045(7) \ 0.000(5) \ -0.012(6) \ 0.010(5)$
C72	0.036(6)	$0.027(6) \ 0.031(6) \ -0.005(5) \ -0.007(5) \ 0.001(5)$
C73	0.028(6)	$0.027(6) \ 0.025(5) \ -0.006(5) \ -0.002(4) \ 0.003(5)$
C74	0.031(6)	$0.027(6) \ 0.022(5) \ -0.012(4) \ 0.003(4) \ 0.002(5)$
C75	0.020(5)	$0.028(6) \ 0.032(6) \ -0.021(5) \ -0.004(4) \ -0.003(4)$
C76	0.034(6)	$0.039(7) \ 0.039(7) \ -0.024(6) \ -0.005(5) \ -0.004(5)$
C77	0.031(7)	0.107(13) $0.045(8)$ $-0.049(8)$ $-0.011(6)$ $-0.007(7)$
C78	0.030(7)	$0.116(14) \ 0.062(9) \ -0.076(10) \ -0.020(6) \ 0.028(8)$
C79	0.036(6)	0.056(8) 0.028(6) -0.028(6) -0.008(5) 0.012(6)
C80	0.036(6)	$0.031(6) \ 0.024(5) \ -0.013(5) \ -0.011(5) \ -0.002(5)$
C81	0.13(2)	0.100(18) 0.15(2) - 0.056(17) - 0.068(18) 0.028(15)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag U1 02 1.775(8) . ? U1 01 1.776(8) . ? U1 04 2.219(7) . ? U1 03 2.402(7) . U1 07 2.468(7) . ? ? U1 N1 2.506(9) . ? U1 N2 2.543(9) . ? U1 U2 3.8809(18) . ? U2 06 1.764(8) . ?

כוז		1	76	، ۵	0			2	
02	05	1.	10	0(0)		•	: -	
U2	08	2.	24	0(7))	•	?	
U2	07	2.	40	1(7))		?	
112	03	2	48	$2\dot{c}$	ر ۲)	_	?	
112	NI 4	2.	10		16	้า	•	• •	
UZ	N4	۷.	22	2(τØ	ワ	•	?	
02	N3	2.	54	1(10))	•	?	
U3	010	1	.7	76	(7	7)		?	
บริ	09	1	77	87	7)	í	_	?	
55	011	÷.	ʻ '	ο τ ο Γ	ر ، ۲	้า	•	• •	
05	011	2	. 4	00	(c)	2	•	?	
U3	012	2	.3	96	(7	')	•	?	
U3	016	2	.4	96	(7	7)		?	
113	N6	2.	53	4(9))	_	?	
112	N 5	2	51	<u>م</u> ر	ςί		-	2	
		2.	07	יינ	ر ن ر 1			•	2
03	04	5.	ŏ/	35	(1)	10)	•	?
04	014	1	./	/4	()	$^{\prime}$	•	- ?	
U4	013	1	.7	82	(7	7)		?	
U4	015	2	.2	20	(8	3)		?	
11/	016	2	2	27 87	\tilde{c}	$\tilde{\mathbf{n}}$	-	2	
	010	2	د.	٥ <i>١</i>	\tilde{a}	2	•	: .	
04	012	2 ک	.4	4)))	•	<u>؛</u>	
U4	N8	۷.	52	×(8))	•	?	
U4	N7	2.	53	1(9))		?	
C1	1 C8	1	1.	71	(2	?)		?	
C1	2 (8	1	1	73	\dot{c}	ń		?	
02	0	1	26	. J 7 (12	ก้	•	?	
03	C1 C20	1	20	4 (1 0	13	עי ירי	、•	:	2
04	CZ0	1	. 3	19	(1)	13)	•	<i>:</i>
07	C21	1	.3	46	(1	2)	•	?
80	C40	1	.3	26	(1	13))		?
01	1 C6	0	1.	33	2(1	3)		?
01	2 C4	1	1	34	70	1	λ		7
01		1	1	22	70	1	27	•	
		T	1.	26		1.	2)	•	:
010	6 C8	V	1.	36	6(1	2)		:
N1	C7	1.	29	9(13	3)	•	?	
Ν1	C8	1.	43	8(12	?)		?	
N2	C14	1	.2	95	(1	4)		?
N2	C13	1	4	24	\hat{i}	4	Ś		?
M 2	C17	1	. 1	07	(1	7	, `	•	ว
CN	C27	1	. 4	91)	•	: 2
NЗ	C28	1	.4	36	(1	1/)	•	?
N4	C34	1	.2	89	(1	[5])	•	?
N4	C33	1	.4	27	(1	6)		?
N5	C47	1	. 2	96	$\dot{(1)}$	4)	_	?
M5	C18	1		25	$\tilde{1}$	2	Ś	•	?
	C40	1	• 4))))		5	, ,	•	:
N6	C54	: 1	. 3	28	(1	15)	•	?
N6	C53	1	.4	18	(1	13)	•	?
N7	C67	1	.2	96	(1	L5))		?
N7	C68	1	.4	24	(1	4)		?
NR	C74	. 1	2	77	\tilde{i}	3	Ś	-	?
MO	C73	1	. 2	<i>יי</i> רכ	(1	1.25	, `	•	: ว
NO	C/3	1	.4	23		5)	•	?
CI	C2	1.	39	0(14	F)	•	?	
C1	C6	1.	41	8(15	5)		?	
C2	C3	1.	38	6(15	5)		?	
C2	Н2	0	95	00		· ·	7		
C2	C /	1	11	۵0 ۸ (15	5		2	
C5	C4	1.	41	00	тJ	יי		4	
C3	H3	0.	95	00	. •		<u> </u>	_	
C4	C5	1.	38	4(14	I)	•	?	
C4	H4	0.	95	00		. 1	?		
C5	C6	1.	40	6(15	5)		?	
C 5	H2	0	95	õõ		<i>.</i>	2.	-	
	C7	1	77	30 77	1/	1	•	2	
	U/	1.	40	4 (@@	14	ŧノ,	. •	?	
C/	H/	۷.	95	٥Q			<u> </u>	-	
C8	C9	1.	37	5(15))	•	?	
C8	C13	1	.3	95	(1	[5])		?

C9 C10 1.376(16) . ? C9 H9 0.9500 . ? C10 C11 1.405(17) . ? C10 H10 0.9500 .? C11 C12 1.370(16) . ? C11 H11 0.9500 .? C12 C13 1.422(15) . ? C12 H12 0.9500 . ? C14 C15 1.443(16) . ? C14 H14 0.9500 . ? C15 C16 1.394(16) . ? C15 C20 1.430(17) . ? C16 C17 1.383(19) . ? C16 H16 0.9500 . ? C17 C18 1.37(2) . ? C17 H17 0.9500 . ? C18 C19 1.391(18) . ? C18 H18 0.9500 . ? C19 C20 1.389(16) . ? C19 H19 0.9500 .? C21 C26 1.403(17) . ? C21 C22 1.398(17) . ? C22 C23 1.389(15) . ? C22 H22 0.9500 . ? C23 C24 1.38(2) . ? C23 H23 0.9500 . ? C24 C25 1.37(2) . ? C24 H24 0.9500 . ? C25 C26 1.429(17) . ? C25 H25 0.9500 . ? C26 C27 1.43(2) . ? C27 H27 0.9500 . ? C28 C33 1.376(19) . ? C28 C29 1.392(18) . C29 C30 1.41(2) . ? ? C29 H29 0.9500 . ? C30 C31 1.37(2) . ? C30 H30 0.9500 . ? C31 C32 1.377(19) . ? C31 H31 0.9500 . ? C32 C33 1.413(18) . ? C32 H32 0.9500 . ? C34 C35 1.439(18) . ? C34 H34 0.9500 . ? C35 C36 1.400(16) . ? C35 C40 1.431(16) . ? C36 C37 1.375(18) . ? C36 H36 0.9500 . ? C37 C38 1.377(18) . ? C37 H37 0.9500 . ? C38 C39 1.366(16) . ? C38 H38 0.9500 . ? C39 C40 1.403(17) . ? C39 H39 0.9500 ? C41 C42 1.407(16) . ? C41 C46 1.435(15) . ? C42 C43 1.383(16) . ? C42 H42 0.9500 . ? C43 C44 1.408(17) . ? C43 H43 0.9500 . ? C44 C45 1.367(16) . ?

C44	H44	0 9500 7	
C11	C16	1 304(15)	2
			•
			2
C46	C47	1.451(15) .	?
C47	H47	0.9500 . ?	
C48	C49	1.382(14) .	?
C48	C53	1.391(15).	?
C49	C50	1.407(16) .	?
C49	H49	0.9500 . ?	
C50	C51	1.379(18)	?
C50	H50	0 9500 7	•
C51	C52	1 387(17)	2
			•
CDI	H D I		2
C52	C53	1.384(15).	?
C52	H52	0.9500 . ?	_
C54	C55	1.435(17) .	?
C54	H54	0.9500 . ?	
C55	C56	1.418(16) .	?
C55	C60	1.427(16).	?
C56	C57	1 389(18)	?
C56	U56		•
C 50	п 30 С Г 0		2
C57	C58	1.3/5(1/) .	?
C57	H57	0.9500 . ?	
C58	C59	1.366(16) .	?
C58	H58	0.9500 . ?	
C59	C60	1.400(15).	?
C59	Н59	0 9500 7	
C61	C66	1 11(15)	2
CG1	C00	1.411(15).	: 7
C01	C02	1.410(10).	: 2
C62	C63	1.381(1/) .	?
C62	H62	0.9500 . ?	
C63	C64	1.400(18) .	?
C63	H63	0.9500 . ?	
C64	C65	1.379(18) .	?
C64	H64	0.9500 . ?	
C65	C66	1.420(17)	?
C65	H65	0 9500 7	•
C05	667	1 425(16)	2
C00		1.455(10).	4
C67	H67	0.9500 . ?	_
C68	C69	1.391(15) .	?
C68	C73	1.391(16) .	?
C69	C70	1.381(17) .	?
C69	H69	0.9500 . ?	
C70	C71	1.383(18) .	?
C70	H70	0.9500 ?	
C71	C72	1 389(16)	2
C71	U71	1.303(10).	•
C71	C72	0.9300.	2
C72	C73	1.394(15).	?
C72	H/2	0.9500 . ?	_
C74	C75	1.432(14) .	?
C74	H74	0.9500 . ?	
C75	C76	1.417(14) .	?
C75	C80	1.435(14) .	?
C76	C77	1.377(16).	?
C76	H76	0.9500 7	-
C77	C78	1 381(17)	2
C77	U77		•
C11	п//	U.JJUU . (~
C/8	C/9	1.3/0(15).	?
C/8	H/8	0.9500 . ?	_
C79	C80	1.380(15) .	?
C79	H79	0.9500 . ?	

C81 H81A 0.9900 . ? C81 H81B 0.9900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 02 U1 01 175.1(3) . . ? 02 U1 04 92.1(3) . . ? 01 U1 04 90.1(3) . . ? 02 U1 03 93.6(3) . . ? 01 U1 03 86.4(3) . . ? 04 U1 03 152.0(3) . . ? ? 02 U1 07 89.2(3) . . 01 U1 07 95.5(3) . . ? 04 U1 07 83.0(3) . . ? 03 U1 07 69.6(2) . . ? 02 U1 N1 89.6(3) . . ? 01 U1 N1 85.7(3) . . ? 04 U1 N1 134.7(3) . . ? 03 U1 N1 72.8(3) . . ? 07 U1 N1 142.3(3) . . ? O2 U1 N2 89.1(3) . . ? 01 U1 N2 87.5(3) . . ? 04 U1 N2 70.9(3) . . ?

 04
 01
 N2
 70.9(5)
 ?

 03
 U1
 N2
 136.6(3)
 .
 ?

 07
 U1
 N2
 153.8(3)
 .
 ?

 01
 U1
 N2
 63.9(3)
 .
 ?

 02
 U1
 U2
 77.2(2)
 .
 ?

 01
 U1
 U2
 105.6(2)
 .
 ?

 04
 U1
 U2
 117.7(2)
 .
 ?

 03
 U1
 U2
 38
 11(17)
 ?

 03 U1 U2 38.11(17) . . ? 07 U1 U2 36.56(17) . . . N1 U1 U2 106.9(2) . . ? N2 U1 U2 163.8(2) . . ? ? 06 U2 05 175.7(3) . . ? 06 U2 08 89.9(3) . . ? 05 U2 08 91.8(3) . . ? 06 U2 07 91.9(3) . . ? 05 U2 07 88.5(3) . . ? 08 U2 07 152.4(3) . . ? 06 U2 03 90.4(3) . . ? 05 U2 03 93.7(3) . . ? 08 U2 03 83.1(3) . . ? 07 U2 03 69.4(2) . . ? 06 U2 N4 93.3(3) . . ? O5 U2 N4 83.5(3) . . ? 08 U2 N4 70.9(3) . . ? 07 U2 N4 136.3(3) . . ? O3 U2 N4 153.7(3) . . ? 06 U2 N3 88.3(3) . . ? 05 U2 N3 87.7(3) . . ? 08 U2 N3 134.5(3) . . ? 07 U2 N3 73.0(3) . . ? 03 U2 N3 142.3(3) . . ? N4 U2 N3 63.8(3) . . ? 06 U2 U1 77.0(2) . . ?

05 U2 U1 105.7(3) . . ? 08 U2 U1 116.7(2) . . ? 07 U2 U1 37.74(15) . . ? 03 U2 U1 36.67(15) . . ?

 03
 U2
 U1
 36.67(15)
 .
 ?

 N4
 U2
 U1
 167.2(2)
 .
 ?

 N3
 U2
 U1
 107.1(2)
 .
 ?

 O10
 U3
 O9
 175.8(3)
 .
 ?

 O10
 U3
 O11
 93.5(3)
 .
 ?

 O10
 U3
 O11
 93.5(3)
 .
 ?

 O10
 U3
 O12
 94.6(3)
 .
 ?

 O10
 U3
 O12
 94.6(3)
 .
 ?

 O10
 U3
 O12
 85.7(3)
 .
 ?

 O11
 U3
 O12
 156.2(2)
 .
 .

 O10
 U3
 O16
 86.8(3)
 .
 ?

 O9
 U3
 O16
 97.1(3)
 .
 ?

 O11
 U3
 O16
 89.0(3)
 .
 ?

 09
 03
 016
 97.1(3)
 .
 ?

 011
 U3
 016
 89.0(3)
 .
 ?

 012
 U3
 016
 69.2(2)
 .
 ?

 010
 U3
 N6
 88.9(3)
 .
 ?

 09
 U3
 N6
 87.9(3)
 .
 ?

 011 U3 N6 70.1(3) . . ? 012 U3 N6 132.3(3) . . ? 016 U3 N6 158.4(3) . . ? 010 U3 N5 86.8(3) . . ? 09 U3 N5 89.3(3) . . ? 011 U3 N5 132.2(3) . . ? 012 U3 N5 70 6(2) 012 U3 N5 70.6(3) . . ? 016 U3 N5 138.6(3) . . ? N6 U3 N5 62.1(3) . . ? 010 U3 U4 77.1(2) . . ? 09 U3 U4 105.3(2) . . ? 011 U3 U4 124.34(19) . . ? 012 U3 U4 37.30(15) . . ? 016 U3 U4 36.54(17) . . ? N6 U3 U4 160.0(2) . . ? N5 U3 U4 102.3(2) . . ? 014 U4 013 176.2(3) . . 014 U4 015 02 2(2) ? 014 04 013 176.2(3) . . . 014 04 015 92.3(3) . . ? 013 04 015 89.5(3) . . ? 014 04 016 91.4(3) . . ? 013 04 016 88.5(3) . . ? 015 04 016 152.1(3) . . ? ? 014 U4 012 87.7(3) . . ? 013 U4 012 95.8(3) . . ? 015 U4 012 82.4(3) . . ?

 016
 U4
 012
 70.2(2)
 ?

 014
 U4
 N8
 88.8(3)
 ?

 013
 U4
 N8
 87.6(3)
 ?

 015
 U4
 N8
 134.5(3)
 ?

 016
 U4
 N8
 73.1(3)
 ?

 012
 U4
 N8
 142.6(2)
 ?

 012 U4 N8 143.0(3) . . ? 014 U4 N7 90.4(3) . . ? 013 U4 N7 87.1(3) . . ? 015 U4 N7 70.5(3) ..? 016 U4 N7 137.1(3) . . ? 012 U4 N7 152.7(3) . . ? N8 U4 N7 64.0(3) . . ? 014 U4 U3 75.4(2) . . ? 013 U4 U3 106.7(2) . . ? 015 U4 U3 116.7(2) . . ? 016 U4 U3 38.49(16) . . ? 012 U4 U3 36.43(17) . . N8 U4 U3 107.5(2) . . ? ?

N7 U4 U3 163.96(19) . . ? N7 04 03 163.96(19) . . C1 03 U1 124.2(6) . . ? C1 03 U2 125.3(6) . . ? U1 03 U2 105.2(3) . . ? C20 04 U1 136.3(7) . . ? C21 07 U2 126.9(6) . . ? C21 07 U1 124.6(7) . . ? U2 07 U1 105.7(2) . . ? C40 08 U2 127 1(6) . . ? C40 08 U2 127.1(6) . . ? C60 011 U3 130.4(6) . . ? C41 012 U3 123.8(6) . . ? C41 012 U4 125.9(6) . . ? U3 012 U4 106.3(2) . . ? C61 015 U4 130 2(7) . . ? C61 015 U4 130.2(7) . . ? C60 016 U4 125.3(6) . . ? C80 016 U3 125.2(6) . . ? U4 016 U3 105.0(3) . . ? C7 N1 C8 117.0(9) . . ? C7 N1 U1 124.3(7) . . ? C8 N1 U1 117.6(6) . . ? C14 N2 C13 118.2(10) . . ? C14 N2 U1 125.7(8) . . ? C13 N2 U1 115.7(7) . . ? C27 N3 C28 118.4(12) . . ? C27 N3 U2 126.0(9) . . ? C28 N3 U2 115.3(8) . . ? C34 N4 C33 119.5(11) . . ? C34 N4 U2 123.4(9) . . ? C33 N4 U2 116.7(8) . . ? C47 N5 C48 117.8(8) . . ? C47 N5 U3 127.4(7) . . ? C48 N5 U3 114.8(6) . . ? C54 N6 C53 120.0(9) . . ? C54 N6 U3 125.5(7) . . ? C54 N6 U3 125.5(/) . . ? C53 N6 U3 114.5(7) . . ? C67 N7 C68 118.2(9) . . ? C67 N7 U4 124.5(7) . . ? C68 N7 U4 116.4(7) . . ? C74 N8 C73 118.9(9) . . ? C74 N8 U4 124.2(7) . . ? C73 N8 U4 116.0(7) . . ? C73 C1 C2 120 6(10) ? 03 C1 C2 120.6(10) . . ? 03 C1 C6 120.3(9) . . ? C2 C1 C6 119.0(10) . . ? C1 C2 C3 120.8(11) . . ? C1 C2 H2 119.6 . . ? C3 C2 H2 119.6 . . ? . ? C2 C3 C4 121.4(10) . C2 C3 H3 119.3 . . ? C4 C3 H3 119.3 . . ? . ? C5 C4 C3 117.7(10) . C5 C4 H4 121.2 . . ? C3 C4 H4 121.2 . . ? C4 C5 C6 122.1(11) . . ? C4 C5 H5 119.0 . . ? C6 C5 H5 119.0 . . ? C5 C6 C1 119.1(10) . . ? C5 C6 C7 114.4(10) . . ? C1 C6 C7 126.5(10) . . ? N1 C7 C6 127.1(10) . N1 C7 H7 116.5 . . ? ? .

C6 C7 H7 116.5 . . ? C9 C8 C13 121.9(10) . . ? C9 C8 N1 122.9(10) . . ? C13 C8 N1 115.2(9) . . ? C8 C9 C10 119.5(11) . . ? C8 C9 H9 120.3 . . ? C10 C9 H9 120.3 . . ? C9 C10 C11 120.7(11) . . ? C9 C10 H10 119.7 . . ? C11 C10 H10 119.7 . . ? C12 C11 C10 119.6(11) . . ? C12 C11 H11 120.2 . . ? C10 C11 H11 120.2 . . ? C11 C12 C13 120.6(10) . C11 C12 H12 119.7 . . ? C13 C12 H12 119.7 . . ? . ? C8 C13 C12 117.7(10) . . ? C8 C13 N2 117.8(9) . . ? C12 C13 N2 124.5(10) . . ? N2 C14 C15 127.3(11) . . ? N2 C14 H14 116.4 . . ? C15 C14 H14 116.4 . . ? C16 C15 C20 120.3(11) . . ? C16 C15 C14 117.0(11) . . ? C20 C15 C14 122.6(10) . . ? C15 C16 C17 119.8(14) . . ? C15 C16 H16 120.1 . . ? C17 C16 H16 120.1 . . ? C18 C17 C16 120.5(14) . . ? C18 C17 H17 119.7 . . ? C16 C17 H17 119.7 . . ? C17 C18 C19 120.5(13) . . ? C17 C18 H18 119.7 . . ? C19 C18 H18 119.7 . . ? C20 C19 C18 121.0(13) . . ? C20 C19 H19 119.5 . . C18 C19 H19 119.5 . ? 04 C20 C19 121.4(11) . . ? 04 C20 C15 120.8(10) . . ? C19 C20 C15 117.8(11) . . ? 07 C21 C26 121.8(12) . . 07 C21 C22 119.7(9) . . ? C26 C21 C22 118.4(10) . . ? C21 C22 C23 121.8(12) . . ? C21 C22 H22 119.1 . . ? C23 C22 H22 119.1 . . ? . ? C24 C23 C22 119.9(14) . C24 C23 H23 120.0 . . ? C22 C23 H23 120.0 . . ? C25 C24 C23 119.6(12) . . ? C25 C24 H24 120.2 . . ? C23 C24 H24 120.2 . . ? C24 C25 C26 121.7(12) . . ? C24 C25 H25 119.1 . . ? C26 C25 H25 119.1 . . ? C21 C26 C25 118.3(14) . . ? C21 C26 C27 126.5(11) . . ? C25 C26 C27 115.2(12) . . ? N3 C27 C26 128.1(12) . . ? N3 C27 H27 116.0 . . ? C26 C27 H27 116.0 . . ?

C33 C28 C29 119.6(14) . . ? C33 C28 N3 117.3(12) . . ? C29 C28 N3 123.1(14) . . ? C28 C29 C30 119.4(16) . . ? C28 C29 H29 120.3 . . ? C30 C29 H29 120.3 . . ? C31 C30 C29 120.8(15) . . ? C31 C30 H30 119.6 . . ? C29 C30 H30 119.6 . . ? C32 C31 C30 119.8(16) . . ? C32 C31 H31 120.1 . . ? C30 C31 H31 120.1 . . ? C31 C32 C33 119.8(15) . . ? C31 C32 H32 120.1 . . ? C33 C32 H32 120.1 . . ? C28 C33 N4 117.0(12) . . ? C28 C33 C32 120.5(13) . . ? N4 C33 C32 122.3(13) . . ? N4 C34 C35 126.9(12) . . ? N4 C34 H34 116.5 . . ? C35 C34 H34 116.5 . . ? C36 C35 C40 118.6(12) . . ? C36 C35 C34 119.7(11) . . ? C40 C35 C34 121.7(10) . . ? C37 C36 C35 122.4(12) . . ? C37 C36 H36 118.8 . . ? C35 C36 H36 118.8 . . ? C38 C37 C36 118.4(11) . . ? C38 C37 H37 120.8 . . ? C36 C37 H37 120.8 . . ? C39 C38 C37 121.5(12) . . ? C39 C38 H38 119.2 . . ? C37 C38 H38 119.2 . . ? C38 C39 C40 121.6(12) . . ? C38 C39 H39 119.2 . . ? C40 C39 H39 119.2 . . ? 08 C40 C39 121.3(10) . . ? 08 C40 C35 121.3(10) . . ? C39 C40 C35 117.3(10) . . ? 012 C41 C42 121.3(10) . . ? 012 C41 C46 120.9(10) . . ? C42 C41 C46 117.7(10) . . ? C43 C42 C41 120.7(11) . . ? C43 C42 H42 119.6 . . ? C41 C42 H42 119.6 . . ? . ? C42 C43 C44 121.5(11) . C42 C43 H43 119.3 . . ? C44 C43 H43 119.3 . . ? C45 C44 C43 118.0(11) . . ? C45 C44 H44 121.0 . . ? C43 C44 H44 121.0 . . ? C44 C45 C46 122.8(10) . . ? C44 C45 H45 118.6 . . ? C46 C45 H45 118.6 . . ? C46 C45 H45 118.6 . . ? C45 C46 C41 119.3(10) . . ? C45 C46 C47 117.6(10) . . ? C41 C46 C47 123.1(10) . . ? N5 C47 C46 126.8(9) . . ? N5 C47 H47 116.6 . . ? C46 C47 H47 116.6 . . ?

C49 C48 C53 120.7(10) . . ?

178

Appendix C.

C49	C48	N5 1	24.	7(:	10)		. 1	?
C53	C48	N5 1	14.	6(9)	9)			?	
C48	C49	C50	118	. 3	(1)	2)			?
C48	C49	H49	120	8	、	-/	2	-	-
C50	C19	цло	120	د	•		2		
	C 5 0	C40	120	.0	· 1 ·	י. רכ	•		2
			141	. 9	(1,	ر ۵	;	•	:
C21	C50	HSU	119	.1	•	•	?		
C49	C50	H20	119	. 1		. •	?		_
C50	C51	C52	118	.2	(1)	1)	•	•	?
C50	C51	H51	120	.9			?		
C52	C51	H51	120	.9			?		
C53	C52	C51	121	.4	(1)	2)			?
C53	C52	H52	119	3	、	_/	?		
C51	C52	ц52 Ц52	110	יבי ז	•	•	2		
C 1 Q	C52	C52	110	. 5	· 1	رە	•		2
	C 5 5		119	ינ. זיר	(1)	<i>ע</i>	•	•	:
C48	C53	NO I	10.	3()	9) 11	•	•	· ' ,	~
C52	C53	N6 1	24.	1(.	11)	•	•	<u> </u>
N6 (C54 (255 1	.23.	2(10)	•	. 3	?
N6 (C54 H	154 1	18.	4	•		?		
C55	C54	H54	118	.4			?		
C56	C55	C60	117	.5	(1)	1)			?
C56	C 5 5	C54	118	3	(1)	-ر 1	-	-	?
	C55	C54	172		(1)	עד הי	•	•	ว
	C22	C54	123	. 9		ע רר	•	•	: 2
C57	C56	C55	171	./	(1,	2)		•	?
C57	C56	H56	119	.2	•		?		
C55	C56	H56	119	.2			?		
C58	C57	C56	118	.7	(1)	2)			?
C58	C57	H57	120	. 6	`.	ĺ.	?		
C56	C57	H57	120	6	-		?		
C50	C58	C57	121	2	(1)	י 1	•		2
			110	.0		1)	•	•	•
C39	C20	про	119	.1	•	•	?		
C57	C58	H28	119	.1	. •	. •	?		_
C58	C59	C60	120	.9	(1)	1)	•	•	?
C58	C59	H59	119	.6			?		
C60	C59	H59	119	.6			?		
011	C60	C59	121	.7	(1)	9)			?
011	C60	C55	119	.1	$\dot{(1)}$	Ó			?
C 5 9	C60	C55	119	1	$\tilde{(1)}$	ر 1	•	•	7
			120		(1)	ע גע	•	•	: 7
		000	140	.4		ע או	•	•	: 2
015	C61	C62	119	. 6	(1)	V)	•	•	?
C66	C61	C62	120	.0	(1)	1)	•	•	?
C63	C62	C61	120	.1	(1)	2)	•	•	?
C63	C62	H62	120	.0			?		
C61	C62	H62	120	.0			?		
C62	C63	C64	121	.0	(1)	2)	_	_	7
C62	C63	H63	119	5	(2	•	•
C61	C63	1105	110	. 5	•	•	2		
	C05	по <u>э</u>	119	. ว		•	4		2
C65	C64	C63	119	. 2	(1.	3)	•	•	?
C65	C64	H64	120	.4	•	•	?		
C63	C64	H64	120	.4			?		
C64	C65	C66	121	.5	(1)	2)			?
C64	C65	H65	119	2	、	_/	?		
C66	C65	U65	110	2	•	•	. 2		
	C03		119	. 4		•	:		2
C01	000	C05	110	• 10		1)	•	•	?
C61	C66	C67	123	.5	(1)	1)	•	•	?
C65	C66	C67	118	.2	(1)	1)	•		?
N7 (C67 (266 1	25.	4(11)		. 1	?
N7 (67 F	167 1	17.	3			?		
C66	C67	H67	117	์ว	•	•	?		
CAQ	68	C73	120	7	(1)	י 1	•		7
603	000	N7 1	220	· / ·	() 1 1 `	יי גי	•	٠,	;
C03	00	11/1	. 4.3 .	<u>4</u> (.	цТ,)	•	•	

C73 C68 N7 116.1(9) . . ? C68 C69 C70 119.7(12) . . ? C68 C69 H69 120.1 . . ? C70 C69 H69 120.1 . . ? C71 C70 C69 119.8(10) . . ? C71 C70 H70 120.1 . . ? C69 C70 H70 120.1 . . ? C70 C71 C72 121.0(11) . . ? C70 C71 H71 119.5 . . ? C72 C71 H71 119.5 . . ? C73 C72 C71 119.4(11) . . ? C73 C72 H72 120.3 . . ? C71 C72 H72 120.3 . . ? C72 C73 C68 119.3(10) . . ? C72 C73 N8 122.9(10) . . ? C68 C73 N8 117.7(9) . . ? N8 C74 C75 128.0(9) . . ? N8 C74 H74 116.0 . . ? C75 C74 H74 116.0 . . ? C76 C75 C80 117.2(9) . . ? C76 C75 C74 115.3(9) . . ? C80 C75 C74 127.5(9) . . ? C77 C76 C75 121.8(11) . . ? C77 C76 H76 119.1 . . ? C75 C76 H76 119.1 . . ? C76 C77 C78 118.3(11) . . ? C76 C77 H77 120.9 . . ? C78 C77 H77 120.9 . . ? C79 C78 C77 122.9(11) . . ? C79 C78 H78 118.6 . . ? C77 C78 H78 118.6 . . ? C80 C79 C78 119.7(10) . . ? C80 C79 H79 120.2 . . ? C78 C79 H79 120.2 . . ? 016 C80 C79 120.9(10) . . ? 016 C80 C75 119.0(9) . . ? C79 C80 C75 120.1(9) . . ? C11 C81 C12 114.4(14) . . ? C11 C81 H81A 108.7 . . ? ? Cl2 C81 H81A 108.7 . . ? Cl1 C81 H81B 108.7 . . ? Cl2 C81 H81B 108.7 . . ? H81A C81 H81B 107.6 . . ? _diffrn_measured_fraction_theta_max 0.975 _diffrn_reflns_theta_full 27.48 _diffrn_measured_fraction_theta_full 0.975 _refine_diff_density_max 2.490 _refine_diff_density_min -2.984

_refine_diff_density_rms

0.239
Appendix D

Crystallographic Information of U^{VI}O₂(saloph)DMSO

data_shelxl

SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? ? _chemical_name_common _chemical_melting_point 'C22 H20 N2 O5 S U ' _chemical_formula_moiety _chemical_formula_sum 'C22 H20 N2 O5 S U' _chemical_formula_weight 662.49 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source <u>с'</u> 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Н' 'Н' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 0.0060 0.0106 '0' '0' 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'U' 'U' -9.6767 9.6646 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 21 1' _symmetry_Int_Tables_number 4 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z'

_cell_length_a 13.303(7)_cell_length_b 9.422(4)_cell_length_c 17.205(8)_cell_angle_alpha 90.00 _cell_angle_beta 94.45(5) _cell_angle_gamma 90.00 _cell_volume 2149.9(17)_cell_formula_units_Z 4 _cell_measurement_temperature 113(2)_cell_measurement_reflns_used 22909 _cell_measurement_theta_min 3.1 _cell_measurement_theta_max 27.6 _exptl_crystal_description 'block' _exptl_crystal_colour 'yellow' _exptl_crystal_size_max 0.27 _exptl_crystal_size_mid 0.15 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas 2 _exptl_crystal_density_diffrn 2.047 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1256 _exptl_absorpt_coefficient_mu 7.684 0.2308 _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max 0.6153 _exptl_absorpt_correction_type numerical _exptl_absorpt_process_details ; Higashi, T. (1999). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan. _diffrn_ambient_temperature 113(2)_diffrn_radiation_wavelength 0.71075 _diffrn_radiation_type MoK¥a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Rigaku RAXIS-RAPID' _diffrn_measurement_method ¥₩ _diffrn_detector_area_resol_mean 10.00 _diffrn_reflns_number 19478 _diffrn_reflns_av_R_equivalents 0.0352 _diffrn_reflns_av_sigmaI/netI 0.0295 _diffrn_reflns_limit_h_min -15 _diffrn_reflns_limit_h_max 17 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -22 _diffrn_reflns_limit_l_max 22 _diffrn_reflns_theta_min 3.07 _diffrn_reflns_theta_max 27.49 _reflns_number_total 9110 _reflns_number_gt 8357 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'PROCESS-AUTO' _computing_cell_refinement 'PROCESS-AUTO' _computing_data_reduction 'CrystalStructure' _computing_structure_solution 'DIRDIF99 (PATTY)' 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement

_computing_molecular_graphics ? ? _computing_publication_material _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[¥s²(Fo²)+(0.0356P)²+4.8982P] where P=(Fo²+2Fc²)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens aeom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00069(9)_refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^{*}¥l^3[/]sin(2¥q)]^{-1/4}' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.012(6)_refine_ls_number_reflns 9110 _refine_ls_number_parameters 560 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0313 _refine_ls_R_factor_gt 0.0267 _refine_ls_wR_factor_ref 0.0677 _refine_ls_wR_factor_gt 0.0658 _refine_ls_goodness_of_fit_ref 1.088 _refine_ls_restrained_S_all 1.088 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group U1 U -0.241447(12) -0.49750(3) -0.008426(9) 0.01257(5) Uani 1 1 d . . . U2 U 0.233812(13) -0.50161(3) -0.469079(9) 0.01390(5) Uani 1 1 d . . . S1 S -0.34365(12) -0.17559(16) 0.05030(9) 0.0197(3) Uani 1 1 d . . . S2 S 0.07819(12) -0.17917(16) -0.44373(9) 0.0196(3) Uani 1 1 d . . 01 0 -0.1289(3) -0.3944(4) -0.0015(2) 0.0179(9) Uani 1 1 d . . .

02 0 -0.3492(4) -0.6116(5) -0.0135(3) 0.0223(9) Uani 1 1 d
$(03 \ 0 \ -0.3460(4) \ -0.2875(5) \ -0.0136(2) \ 0.0244(10) \ \text{Hani} \ 1 \ 1 \ d$
$04\ 0\ -0.2603(3)\ -0.4559(4)\ -0.1378(2)\ 0.0197(9)\ Uani\ 1\ 1\ d$
05 0 - 0.2584(3) - 0.4552(4) 0.1200(2) 0.0157(9) Uani 1.1 d
$06 \ 0 \ 3310(3) \ -0 \ 3719(4) \ -0 \ 4712(2) \ 0 \ 0199(9) \ \text{Hamiltonia}$
00000.3310(3) = 0.3713(4) = 0.4712(2) 0.0135(3) 0.0111 1 1 0
$07 \ 0 \ 0.1422(4) -0.0554(5) -0.4055(5) \ 0.0215(10) \ 0all 1 \ 1 \ d$
$00 \ 0 \ 0.0571(3) = 0.5571(4) = 0.4502(3) \ 0.0100(3) \ 0.0111 \ 1 \ 1 \ 0 \ . \ . \ . \ . \ . \ . \ . \ . \ .$
0.5 = 0.1332(3) - 0.4403(4) - 0.3300(2) 0.0201(3) 0.0111 1 1 0 0.010 0 0.2422(2) 0.4724(5) 0.2274(2) 0.0229(12) 11.01
$U_1 \cup U_2 U_2 U_3 = 0.4734(3) = 0.5374(2) \cup 0.0220(12) U_3 U_1 U_1 U_1 U_2 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3$
NIN $-0.1415(4) -0.0705(5) -0.0804(5) 0.0150(9) Uant I I d$
NZ = N - 0.1399(4) - 0.6790(5) = 0.0744(3) = 0.0146(9) = 0.011 = 1 = 0.5.
N3 N $0.3271(4) - 0.6719(5) - 0.5562(3) 0.0134(10) Uani 1 1 d$
N4 N 0.3680(4) - 0.6636(5) - 0.4025(3) 0.01/(10) Uani I I d
$CI \subset -0.1910(5) -0.4359(6) -0.187(3) 0.0169(12) Uani I I d$
$C_2 C = 0.2002(5) = 0.3234(7) = 0.2415(4) 0.0233(13)$ Uani 1 1 d
H2 H -0.2550 -0.2591 -0.2401 0.028 UISO 1 1 CALC R
C3 C -0.1305(5) -0.3045(6) -0.2967(3) 0.0228(13) Uani 1 1 d
H3 H -0.1387 -0.2280 -0.3326 0.027 Uiso 1 1 calc R
C4 C -0.0484(5) -0.3967(7) -0.3002(3) 0.0235(14) Uani 1 1 d
H4 H -0.0002 -0.3829 -0.3375 0.028 Uiso 1 1 calc R
C5 C -0.0393(4) -0.5069(10) -0.2485(3) 0.0192(10) Uani 1 1 d
H5 H 0.0155 -0.5710 -0.2513 0.023 Uiso 1 1 calc R
C6 C -0.1082(5) -0.5296(5) -0.1909(3) 0.0166(13) Uani 1 1 d
C7 C -0.0946(4) -0.6562(6) -0.1423(3) 0.0163(11) Uani 1 1 d
H7 H -0.0486 -0.7265 -0.1571 0.020 Uiso 1 1 calc R
C8 C -0.1309(5) -0.8139(6) -0.0440(3) 0.0171(11) Uani 1 1 d
C9 C -0.1242(5) -0.9405(6) -0.0833(4) 0.0171(12) Uani 1 1 d
H9 H -0.1268 -0.9408 -0.1387 0.020 Uiso 1 1 calc R
C10 C -0.1139(5) -1.0665(6) -0.0430(4) 0.0179(12) Uani 1 1 d
H10 H -0.1080 -1.1532 -0.0704 0.022 Uiso 1 1 calc R
C11 C -0.1121(5) -1.0671(6) 0.0376(4) 0.0178(12) Ilani 1 1 d
H11 H -0.1053 -1.1543 0.0653 0.021 Uiso 1 1 calc R
(12 C - 0.1201(5) - 0.9409(6) 0.0780(4) 0.0178(12) Hani 1 d
H12 H $-0.1202 - 0.9421 \ 0.1332 \ 0.021 \ \text{Uiso} \ 1.1 \ \text{calc} \ \text{R}$
(13 C - 0.1280(4) - 0.8128(6) 0.0382(3) 0.0140(11) Hani 1.1 d
$(14 \ (-0 \ 0917(4) \ -0 \ 6524(6) \ 0 \ 1401(3) \ 0 \ 0152(11) \ \text{Hani} \ 1 \ 1 \ d$
H14 H $_{0}$ 0.442 $_{0}$ 7213 0 1598 0 018 U so 1 1 calc R
$(15 \ C = 0 \ 1034(4) = 0 \ 5261(6) \ 0 \ 1871(3) \ 0 \ 0169(13) \ \text{Hamiltonian}$
$(16 \ C = 0.0287(4) = 0.5201(0) \ 0.1071(5) \ 0.0105(15) \ 0.0111 \ 1 \ d \$
$U_1 = U_1 = 0.027$ $U_2 = 0.0009 (10) = 0.2492 (2) = 0.0173 (9) = 0.0111 = 1 = 0.027$
$(10 \text{ m} \cdot 0.0277 - 0.0026 \cdot 0.2000 \cdot 0.021 \cdot 0.0001 \cdot 1 \cdot 0.001(12) \cdot 0.0001(12) \cdot 0.0001(12$
U17 U = 0.0550(5) = 0.5091(0) 0.5000(5) 0.0201(12) 0dil 1 1 0
HI/H = 0.0134 - 0.3723 = 0.3413 = 0.0024 = 0.0180 = 1 = Calc K = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
C16 C $-0.1215(5)$ $-0.5009(6)$ $0.2905(5)$ $0.0160(12)$ Udit 1 1 0
HI8 H -0.1284 -0.2239 0.3232 0.022 UISO I I CAIC K
C19 C = 0.1952(5) = 0.3237(7) 0.2311(3) 0.0235(13) Uani 1 1 d
H19 H -0.2526 -0.2635 0.2265 0.028 U1so 1 1 calc R
$C_{20} C = 0.18/1(5) = 0.4353(6) 0.17/0(3) 0.0153(11) Uani 1 1 d$
C21 C - 0.4448(5) - 0.2194(7) 0.1061(4) 0.0248(14) Uani 1 1 d
H21A H -0.4277 -0.3047 0.1370 0.037 Uiso 1 1 calc R
H21B H -0.5053 -0.2374 0.0713 0.037 Uiso 1 1 calc R
H21C H -0.4575 -0.1405 0.1412 0.037 Uiso 1 1 calc R
C22 C -0.3943(5) -0.0202(8) 0.0013(4) 0.0294(16) Uani 1 1 d
H22A H -0.3452 0.0173 -0.0330 0.044 Uiso 1 1 calc R
H22B H -0.4088 0.0519 0.0399 0.044 Uiso 1 1 calc R
H22C H -0.4567 -0.0450 -0.0298 0.044 Uiso 1 1 calc R
C23 C 0.2542(5) -0.4241(6) -0.6530(3) 0.0188(12) Uani 1 1 d
C24 C 0.2426(5) -0.3003(7) -0.6989(3) 0.0214(13) Uani 1 1 d
H24 H 0.1944 -0.2310 -0.6867 0.026 Uiso 1 1 calc R
C25 C 0.2998(5) -0.2779(7) -0.7612(3) 0.0217(13) Uani 1 1 d
H25 H 0.2922 -0.1921 -0.7901 0.026 Uiso 1 1 calc R
C26 C 0.3695(5) -0.3804(7) -0.7827(3) 0.0222(13) Uani 1 1 d

H26 H 0.4061 -0.3664 -0.8274 0.027 Uiso 1 1 calc R . C27 C 0.3839(4) -0.5019(11) -0.7378(3) 0.0199(10) Uani 1 1 d . . . H27 H 0.4302 -0.5723 -0.7521 0.024 Uiso 1 1 calc R . C28 C 0.3305(5) -0.5218(7) -0.6713(3) 0.0183(14) Uani 1 1 d . . . C29 C 0.3540(5) -0.6477(6) -0.6258(3) 0.0189(12) Uani 1 1 d . . . H29 H 0.3925 -0.7190 -0.6488 0.023 Uiso 1 1 calc R . C30 C 0.3583(4) -0.8019(6) -0.5206(3) 0.0167(11) Uani 1 1 d . . . C31 C 0.3639(5) -0.9310(6) -0.5597(4) 0.0218(13) Uani 1 1 d . . . H31 H 0.3464 -0.9357 -0.6143 0.026 Uiso 1 1 calc R . C32 C 0.3949(5) -1.0524(7) -0.5192(5) 0.0240(14) Uani 1 1 d . . . H32 H 0.3985 -1.1402 -0.5461 0.029 Uiso 1 1 calc R . . C33 C 0.4208(5) -1.0463(7) -0.4393(4) 0.0230(14) Uani 1 1 d . . . H33 H 0.4434 -1.1295 -0.4121 0.028 Uiso 1 1 calc R . . C34 C 0.4136(5) -0.9184(7) -0.3992(4) 0.0240(14) Uani 1 1 d . . . H34 H 0.4296 -0.9148 -0.3445 0.029 Uiso 1 1 calc R . . C35 C 0.3832(4) -0.7974(6) -0.4394(3) 0.0151(11) Uani 1 1 d . . C36 C 0.4303(5) -0.6242(6) -0.3450(3) 0.0178(12) Uani 1 1 d . . . H36 H 0.4890 -0.6804 -0.3342 0.021 Uiso 1 1 calc R . C37 C 0.4182(4) -0.5018(10) -0.2959(3) 0.0194(10) Uani 1 1 d . . . C38 C 0.5017(5) -0.4575(7) -0.2458(3) 0.0231(15) Uani 1 1 d . . . H38 H 0.5651 -0.5024 -0.2493 0.028 Uiso 1 1 calc R . . C39 C 0.4929(5) -0.3504(7) -0.1919(4) 0.0250(14) Uani 1 1 d . . . H39 H 0.5501 -0.3188 -0.1601 0.030 Uiso 1 1 calc R . . C40 C 0.3975(6) -0.2892(7) -0.1852(4) 0.0274(15) Uani 1 1 d . . . H40 H 0.3902 -0.2162 -0.1481 0.033 Uiso 1 1 calc R . C41 C 0.3143(6) -0.3340(8) -0.2321(4) 0.0282(15) Uani 1 1 d . . . H41 H 0.2501 -0.2943 -0.2244 0.034 Uiso 1 1 calc R . C42 C 0.3219(5) -0.4369(7) -0.2908(3) 0.0192(12) Uani 1 1 d . . . C43 C 0.1867(5) -0.1189(8) -0.3872(5) 0.0323(16) Uani 1 1 d . . . H43A H 0.1871 -0.1583 -0.3344 0.048 Uiso 1 1 calc R . . H43B H 0.1858 -0.0150 -0.3845 0.048 Uiso 1 1 calc R . . H43C H 0.2473 -0.1501 -0.4113 0.048 Uiso 1 1 calc R . C44 C 0.0980(6) -0.0937(7) -0.5330(4) 0.0328(17) Uani 1 1 d . . . H44A H 0.0426 -0.1170 -0.5717 0.049 Uiso 1 1 calc R . . H44B H 0.1619 -0.1260 -0.5516 0.049 Uiso 1 1 calc R . . H44C H 0.1005 0.0093 -0.5249 0.049 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 U1 0.01350(9) 0.01247(9) 0.01163(9) -0.00065(15) 0.00028(6) 0.00148(14)U2 0.01401(10) 0.01555(9) 0.01213(9) 0.00260(16) 0.00096(6) 0.00093(15) S1 0.0195(8) 0.0207(7) 0.0191(7) -0.0009(5) 0.0028(6) 0.0016(6) S2 0.0172(8) 0.0215(7) 0.0206(7) 0.0011(5) 0.0045(6) 0.0033(6) 01 0.021(2) 0.0119(18) 0.020(2) 0.0001(15) 0.0027(17) 0.0000(17) 02 0.027(3) 0.023(2) 0.017(2) -0.0013(17) 0.0015(18) -0.0018(19) 03 0.030(3) 0.027(3) 0.016(2) -0.0020(17) -0.0022(18) 0.015(2) 04 0.028(2) 0.020(2) 0.0119(19) 0.0017(13) 0.0036(16) 0.0051(16) 05 0.017(2) 0.020(2) 0.0126(19) -0.0007(13) -0.0001(15) 0.0050(15) 06 0.021(2) 0.018(2) 0.021(2) 0.0013(16) 0.0037(17) -0.0039(18) 07 0.024(3) 0.027(2) 0.015(2) 0.0047(17) 0.0025(19) -0.004(2) 08 0.018(2) 0.017(2) 0.022(2) 0.0010(16) 0.0058(18) 0.0056(18) 09 0.021(2) 0.025(2) 0.014(2) 0.0071(15) 0.0002(16) 0.0053(17) 010 0.015(2) 0.039(4) 0.0144(17) 0.0023(18) -0.0001(14) 0.005(2) N1 0.013(2) 0.012(2) 0.013(2) -0.0017(17) -0.0050(17) 0.0019(19) N2 0.017(3) 0.013(2) 0.014(2) 0.0012(17) 0.0023(18) 0.0001(19)

(0.0018(19) - 0.0021(19) - 0.003(2))
(0.0035(18) - 0.0021(19) - 0.001(2))
(5) -0.002(2) -0.001(2) -0.003(2)
(0,002(2)) - 0.004(2) 0.004(3)
(3) 0.004(2) - 0.002(2) - 0.005(3)
(3) -0.003(2) 0.002(3) -0.006(3)
(2) = 0.0000(2) = 0.0007(3) = 0.0000(3)
$(1) = 0 \ 0.017(18) = 0 \ 0.02(2) = 0 \ 0.02(2)$
(2) = 0.0027(10) = 0.002(2) = 0.002(2)
(2) = 0.003(2) = 0.001(2) = 0.004(2)
(2) = 0.000(2) = 0.001(2) = 0.004(2)
(2) -0.005(2) 0.001(2) -0.005(2)
(3) 0.001(2) -0.001(3) 0.003(2)
(3) -0.001(2) 0.000(3) -0.005(2)
3) 0.002(2) 0.000(3) 0.000(2)
(3) -0.003(2) 0.000(2) 0.000(2)
3) 0.000(2) 0.001(2) -0.002(2)
(2) 0.003(2) 0.0019(19) 0.001(2)
(2) -0.003(4) 0.0030(17) -0.006(4)
(3) -0.002(2) 0.001(2) -0.011(3)
(3) -0.004(2) 0.003(2) -0.003(2)
(3) 0.002(2) 0.007(2) 0.002(3)
(3) 0.000(2) 0.001(2) -0.003(2)
3) 0.003(3) 0.011(3) 0.007(3)
3) 0.002(3) 0.005(3) 0.004(3)
3) 0.001(2) 0.000(2) -0.001(2)
3) 0.003(2) 0.000(2) -0.001(3)
(3) 0.008(2) - 0.005(2) - 0.002(3)
(3) 0.006(2) 0.002(2) -0.007(3)
(2) 0.001(4) -0.0010(18) -0.001(4)
(2) -0.005(2) 0.0005(19) -0.004(3)
$(3) - 0 \ 0.04(2) \ 0 \ 0.000(2) - 0 \ 0.02(2)$
(3) = 0.001(2) = 0.000(2) = 0.002(2)
(3) 0.003(3) 0.002(2) 0.002(2)
$(4) = 0 \ 0.01(3) \ 0 \ 0.08(3) \ 0 \ 0.01(2)$
(4) = 0.001(3) = 0.000(3) = 0.001(2)
(4) = 0.000(2) = 0.002(3) = 0.004(2)
(4) 0.009(5) -0.004(5) 0.002(5)
(2) 0.003(2) -0.001(2) -0.002(2)
(3) 0.009(2) -0.003(2) 0.001(2)
(2) 0.006(4) 0.0006(17) 0.000(4)
(3) 0.005(2) 0.001(2) -0.004(2)
(3) 0.001(2) - 0.003(2) - 0.008(3)
3) -0.003(2) 0.003(3) -0.003(3)
3) -0.002(3) 0.001(3) 0.003(3)
3) 0.002(2) 0.000(2) 0.001(2)
(4) -0.014(3) 0.002(3) -0.001(3)
(4) 0.013(3) 0.012(3) 0.001(3)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

goom bond site summetry 2
_geom_bond_site_symmetry_2
$U_{1} = 01 + 780(4) = 2$
U1 02 1.788(5) . ?
U1 04 2.255(4) . ?
U1 05 2.274(4) . ?
U1 03 2.416(4) . ?
U1 N1 2.541(5) . ?
U1 N2 2.545(5) . ?
U2 06 1.781(4) . ?
U2 07 1.784(5) . ?
$U2 \ 09 \ 2.2/0(4)$. ?
$U_2 \ U_1 U_2 \ Z_1 Z_1 (4) \ Z_2 (4) \ Z_1 (4) \ Z_2 $
$U_2 \ U_8 \ 2.408(4) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$U_2 = W_4 = 2.551(5)$. (1) 112 N3 2 580(5) 2
$S_1 \cap S_1 = S_1 \cap S_1 \cap S_2 $
S1 (21 1 762(6)) ?
S1 (22 1.795(7) . ?
S2 08 1.533(4) . ?
S2 C44 1.772(7) . ?
S2 C43 1.771(7) . ?
04 C1 1.321(7) . ?
05 C20 1.323(7) . ?
09 C23 1.314(7) . ?
010 (42 1.323(7) . ?)
NI $(7 \ 1.292(8) \ . ?$
NI CO I.423(7) . (7) . (7)
$N_2 (13 1.421(7) . ?)$
N3 C29 1.296(8) . ?
N3 C30 1.417(7) . ?
N4 C36 1.295(8) . ?
N4 C35 1.433(8) . ?
C1 C2 1.407(8) . ?
C1 C6 1.415(8) . ?
C2 C3 1.388(9) . ?
(2 H2 0.9500 . ?)
$(3 \ 13 \ 0 \ 500 \ 7)$
$C_{3} = 0.3300$
$(4 \ H4 \ 0.9500 \ . ?$
C5 C6 1.419(7) . ?
C5 H5 0.9500 . ?
C6 C7 1.460(8) . ?
C7 H7 0.9500 . ?
C8 C9 1.378(8) . ?
C8 C13 1.411(8) . ?
C9 C10 1.377(8). ?
(9 H9 0.9500 . ?)
C10 C11 1.383(10) . ?
C11 C12 1.385(8) . ?
C11 H11 0.9500 . ?
C12 C13 1.388(8) . ?
C12 H12 0.9500 . ?
C14 C15 1.454(8) . ?
C14 H14 0.9500 . ?
(15) (20) $(1.405(8))$. ?
$\begin{array}{c} (13 \ (10 \ 1.42 \ (1) \ . \) \\ (16 \ (17 \ 1 \ 383 \ (10) \) \end{array} $
CIO CII I'JOJ(IM) ' ;

C16 H16 0.9500 . ?
C17 C18 1.412(9) . ?
C17 H17 0.9500 . ?
C18 C19 1.375(9) . ?
C18 H18 0.9500 . ?
C19 C20 1.415(8) . ?
C19 H19 0.9500 . ?
C21 H21A 0.9800 . ?
C21 H21B 0.9800 . ?
C21 H21C 0.9800 . ?
C22 H22A 0.9800 . ?
C22 H22B 0.9800 . ?
C22 H22C 0.9800 . ?
C23 C24 1.411(8) . ?
C23 C28 1.424(9) . ?
C24 C25 1.378(9) . ?
C24 H24 0.9500 . ?
C25 C26 1.407(9) . ?
C25 H25 0.9500 . ?
C26 C27 1.387(11) . ?
C26 H26 0.9500 . ?
C27 C28 1.405(7) . ?
C27 H27 0.9500 . ?
C28 C29 1.442(9) . ?
C29 H29 0.9500 . ?
C30 C31 1.396(8) . ?
C30 C35 1.410(8) . ?
C31 C32 1.386(8) . ?
C31 H31 0.9500 . ?
C32 C33 1.392(11) . ?
C32 H32 0.9500 . ?
C33 C34 1.396(9) . ?
C33 H33 0.9500 . ?
C34 C35 1.378(8) . ?
C34 H34 0.9500 . ?
C36 C37 1.446(10) . ?
СЗ6 НЗ6 0.9500 . ?
C37 C42 1.428(9) . ?
C37 C38 1.414(8) . ?
C38 C39 1.382(9) . ?
C38 H38 0.9500 . ?
C39 C40 1.407(10) . ?
C39 H39 0.9500 . ?
C40 C41 1.384(10) . ?
C40 H40 0.9500 . ?
C41 C42 1.410(9) . ?
C41 H41 0.9500 . ?
C43 H43A 0.9800 . ?
C43 H43B 0.9800 . ?
C43 H43C 0.9800 . ?
C44 H44A 0.9800 . ?
C44 H44B 0.9800 . ?
C44 H44C 0.9800 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
<pre>_geom_angle_site_symmetry_1</pre>
_geom_angle_site_symmetry_3

_9	jeo	m_an	gle	≥_p	bul	bl	$_{f}$	1	ag		
01	U1	02	176	5.0)0	(1	9)				?
01	U1	04	89.	97	'(18)	_	_	7	,
02	111	01	01	69.	\tilde{c}	1 Q	Ś	•		2	,
02	01	04	91. 00	00		10	Ś	•	•	:	
01	01	05	89.	. 20)(17)	•	•	1	•
02	U1	05	90.	74	ł(18)			?	•
04	U1	05	156	5.4	18	(1	4)		_	_	7
<u>01</u>	111	02	01	00	\tilde{r}	10	Ś		•	· 2	,
01	01	05	91. 01	. 90		10)	•		:	
02	UI	03	91.	9(ζΖ,)	•	•	:		
04	U1	03	78.	55	5(14)			?)
05	U1	03	77.	90)(14)			?	•
01	II1	N 1	85	94	ì	17	í			2	,
01	111	1N 1 NT 1	0.1	21		1 / 1 0	Ś	•		:	,
02	01	NT	91.	. 2 1	- (10)	•		-	
04	U1	N1	70.	01	.(15)	•	•	?	•
05	U1	N1	133	3.3	33	(1	4)				?
03	U1	N 1	148	2 4	18	λì	5Ĵ				7
01	111	NO	00	5/	10	10	$\frac{3}{1}$		•	• 2	,
01	01	NZ NO	0).	. 34		10	Ś	•		:	
02	01	N2	90.	68	3(19)	•	•	- 7	,
04	U1	N2	133	3.0)8	(1	5)				?
05	U1	N2	70.	25	50	15)			?	•
03	111	N2	1/1	2 1	7	(1	í١	-	-	-	2
11	111	112	110	נ.(זר		1 -			•	•	
NI	UI	ΝZ	63.	10	I(12)	•	•	_ {	
06	U2	07	176	5.5	5 (2)	•		•	?	
06	U2	09	86.	54	ł(18)			?	•
07	112	09	94	88	ì	19	í			7	,
06	112	010	0	7 7	7	<u> </u>	ر م	•	•	•	2
00	02	010	07	. /	4		0)		•	•	:
07	02	010	92	2.0	16	(1	9)		•	•	?
09	U2	010	15	58.	0	1(16)			?
06	U2	08	96.	55	5(18)			?	•
07	112	08	86	86	ì	18	í			2	,
07	112	00	70	г о о		1 F	Ś	•	•		,
09	02	08	79.	50	5(12) N	•	•	:	_
010) U	2 08	80).()1	(1	6)		•	•	?
06	U2	N4	86.	34	ł(19)			?	•
07	U2	N4	90.	37	'	19)			?	•
00	112	N/	121	5	:1	<u> </u>	رم دم	•		•	2
03	02	117 2 114	121		, 1		$\frac{0}{2}$		•	•	:
010	U V	Z N4	65	1.1	.5	(T	6)		•	•	<i>:</i>
08	U2	N4	148	3.9	91	(1	5)		•		?
06	U2	N3	91.	83	6	18)			?	•
07	112	NЗ	85	72	ì	19	í			7	,
00	112	MO	60.	0/	$\dot{\boldsymbol{c}}$	16	Ś	•	•		,
09	02	211	09.	. 94	E	10)	:	•	4	~
010) U	2 N 3	1:	31.	5	V (16)	•	•	?
08	U2	N3	147	7.8	31	(1	6)		•		?
N4	U2	N3	62.	43	6	16)			?	•
03	S 1	C21	10	34	ģ	(3	Ś			7	,
03	C 1	C22	1.6	, <u>.</u> . \ 2	0	$\frac{1}{2}$	Ś	•	•		,
05	21		210	. כע	9	(2)	Ś	•	•	· ·	
C21	5	I C2	2 9	99.	9	(3)	•	•	:	
08	S2	C44	10)5.	3	(3)			?	•
80	S2	C43	10)5.	3	(3)			?)
CA/	1 5	2CA	2 0	a a	2	сл	í	-	-	2	,
C1	- J	2 C7	17	1	4	(τ))	•		- ·	
21	05	01	124	ŧ. 1	. (2)	•		•	{	
C1	04	01	129).5	• (·	4)	•		•	?	
C20	0 (5 U1	12	28.	7	(4)			?	•
S2	08	U2	140).5	6	3)	-			?	
<u> </u>	ຳ	ς <u>Γ</u> ο	1	202	5	(1	٠.		-	່າ	,
C4-		יז 10 10 יי	יד. י	10-	<i>,</i> ,	(+ [/	ノ イン	•	•	•	2
C42	. 0	TA O	4	.4/) (4)		•	:	'
C7	Ν1	C8	118	5.0)(5)	•		•	?	
C7	N1	U1	126	5.7	'('	4)				?	
C8	N1	U1	115	5.1	(3)	-			?	
C1/	L N	2^{-1}	3 1	10)	7(<u>5</u>				7
C1/	L 11	ם כב זוז כ	1)/)/	0	· ($\frac{1}{2}$		•	•	
C14	t IN	2 UI	14	.4.	ŏ	(4	Ś	•	•		
C13	5 N	2 U1	11	15.	1	(3)	•	•	?	•

C29 N3 C30 117.4(5) . . ? C29 N3 U2 127.4(4) . . ? C30 N3 U2 115.1(4) . . ? C36 N4 C35 119.1(5) . . ? C36 N4 U2 123.7(4) . . ? C35 N4 U2 116.5(4) . . ? O4 C1 C2 120.4(6) . . ? O4 C1 C6 121.4(5) . . ? C2 C1 C6 118.2(6) . . ?

 04
 C1
 C6
 121.4(5)
 . . ?

 C2
 C1
 C6
 118.2(6)
 . ?

 C3
 C2
 C1
 121.2(6)
 . ?

 C3
 C2
 H2
 119.4
 . ?

 C1
 C2
 H2
 119.4
 . ?

 C2
 C3
 C4
 120.9(6)
 . ?

 C2
 C3
 H3
 119.5
 . ?

 C4
 C3
 H3
 119.5
 . ?

 C5 C4 C3 118.3(6) . . ? C5 C4 H4 120.9 . . ? C3 C4 H4 120.9 . . ? C4 C5 C6 122.7(7) . . ? C4 C5 H5 118.7 . . ? C6 C5 H5 118.7 . . ? C1 C6 C5 118.7(6) . . ? C1 C6 C5 118.7(6) . . ? C1 C6 C7 123.3(5) . . ? C5 C6 C7 117.7(6) . . ? N1 C7 C6 123.9(5) . . ? N1 C7 H7 118.1 . . ? C6 C7 H7 118.1 . . ? C9 C8 N1 124.6(5) . . ? C9 C8 C13 120.1(6) . . ? N1 C8 C13 115.3(5) . . ? C8 C9 C10 120.4(5) . . ? C8 C9 H9 119.8 . . ? C10 C9 H9 119.8 . . ? C10 C9 H9 119.8 . . ? C9 C10 C11 120.1(5) . . ? C9 C10 H10 120.0 . . ? C11 C10 H10 120.0 . . ? C12 C11 C10 120.2(6) . . ? C12 C11 H11 119.9 . . ? C10 C11 H11 119.9 . . ? C10 C11 H11 119.9 . . ? C11 C12 C13 120.3(5) . . ? C11 C12 H12 119.9 . . ? C13 C12 H12 119.9 . . ? C12 C13 N2 124.2(5) . . ? C12 C13 C8 118.9(5) . . ? N2 C13 C8 116.8(5) . . ? N2 C14 C15 125.7(5) . . ? N2 C14 H14 117.1 . . ? C15 C14 H14 117.1 . . ? C15 C14 H14 117.1 . . ? C20 C15 C16 119.5(6) . . ? C20 C15 C14 123.1(5) . . ? C16 C15 C14 117.2(6) . . ? C20 C15 C14 123.1(5) . . ? C16 C15 C14 117.2(6) . . ? C17 C16 C15 122.1(7) . . ? C17 C16 H16 119.0 . . ? C15 C16 H16 119.0 . . ? C16 C17 C18 117.5(6) . . ? C16 C17 H17 121.3 . . ? C18 C17 H17 121.3 . . ? C19 C18 C17 121.6(5) . . ? C19 C18 H18 119.2 . . ? C17 C18 H18 119.2 . . ?

C18 C19 C20 121.2(6) . . ?

C18	C19	H19	11	9.	4	·	•	?	
C20	C19	H19	11	9.	4		•	?	-
05 (20 (C15	121	• 5)(!	5)	•	·	2
05 (220 (C19	120	.4	1((5)	•	·	?
C15	C20	C19	11	8.	. 1 ((5)	•		. ?
S1 (21 1	H21A	10	9.	5	•	•	?	
S1 (C21 I	H21B	10	9.	5	•	•	?	
H21/	A C2	1 H2	1B	10)9	. 5	•	•	?
S1 (C21 I	H21C	10	9.	5			?	
H21/	A C2	1 H2	1C	10	9	. 5			?
H21E	3 C2	1 H2	1C	10	9	. 5			?
S1 (22 1	H22A	10	9.	5			?	
S1 (22 1	H22B	10	9.	5			?	
H22/	A C22	2 H2	2B	10	9	. 5			?
S1 (22 1	H22C	10	9.	5			?	-
H22/	A C22	2 H2	$2\overline{C}$	16	9	. 5			7
H22F	2 C2	2 H2	20	16	19	5	•	•	7
00 (772 0	C21	121	10		.ງ ເງ	•	•	. 2
09 0	-45 1	C24	121 171	- 0	7 (1	5)	•	•	: 7
09 (-43 V 633	C20	141	;')) (F)	•	•	' ``
C24	C23	C28	11	1.	. 31	(3)	•	•	· ?
C25	C24	C23	12	1.	. 31	(6)	•	_ '	. :
C25	C24	H24	11	9.	4	•	•	?	
C23	C24	H24	11	9.	4	•	•	?	
C24	C25	C26	12	0.	9	(6)	•		. ?
C24	C25	H25	11	9.	5			?	
C26	C25	H25	11	9.	5			?	
C27	C26	C25	11	9.	1	(6)			?
C27	C26	H26	12	0.	5	Ì.		?	
C25	C26	H26	12	Ô.	5			?	
C26	C27	C28	12	٥. ٥	5	(7)	•	•	7
C26	C27	H27	11	а. а	8	(1)	•	2	•••
C28	C27	H27	11	a.	2	•	•	: 7	
C20	C20	C22	12	۶. ۵	5		•	:	2
C27	C20	C20	11	0. 6	0	(0)	•		' <u>'</u>
C27	C20	C29	11	ט. ר	0		•		· '
C23		C29	12	4.	0	(\mathbf{b})	•	•	. <u>.</u> .
N3 (_29 (28	125	. /	()	5)	•	•	?
N3 (29 1	H29	117	-2	2	• •	?	_	
C28	C29	H29	11	7.	. 2	•	•	?	
C31	C30	C35	11	9.	1	(5)	•		. ?
C31	C30	N3	124	.7	7(6	5)			?
C35	C30	N3	116	. 2	?(!	5)			?
C30	C31	C32	12	0.	1	(6)			?
C30	C31	H31	11	9.	9			?	
C32	C31	H31	11	9.	9			?	
C31	C32	C33	12	0.	3	(6)			?
C31	C 32	H32	11	9	9			?	
C 3 3	C32	H32	11	9	9	•	-	7	
C34	C33	C32	12	٥. ١	2	(6)	•	•	2
C34	C33	U22	11	0. 0	0		•	2	
C24	C33	пээ 1122	11	9. 0	. 9	•	•	י ר	
C34	C24		11	9. 0	.9		•	:	2
C35	C34		11	9.	. / I	(0)	•	<u>،</u>	. :
C35	C34	H34	12	0.	. 2	•	•	?	
C33	C34	Н34	12	0.	2		•	?	~
C34	C35	C30	12	0.	6	(6)	•		. ?
C34	C35	N4	123	. 5	5((5)	•	•	?
C30	C35	N4	115	.8	3(!	5)	•	•	?
N4 (36 (C37	125	. 5	5(!	5)	•		?
N4 (C36 I	H36	117	.2	2		?	,	
C37	C36	H36	11	7.	2			?	
C42	C37	C38	12	0.	1	(7)			?
C42	C37	C36	12	1.	2	(5)			?

C38 C37 C36 118.3(6) . . ? C39 C38 C37 121.4(6) . . ? C39 C38 H38 119.3 . . ? C37 C38 H38 119.3 . . ? C38 C39 C40 118.5(6) . . ? C38 C39 H39 120.7 . . ? C40 C39 H39 120.7 . . ? C41 C40 C39 120.9(6) . . ? C41 C40 H40 119.5 . . ? C39 C40 H40 119.5 . . ? C40 C41 C42 121.9(7) . . ? C40 C41 H41 119.1 . . ? C42 C41 H41 119.1 . . ?

 010
 C42
 C41
 113.1
 .
 .
 ?

 010
 C42
 C41
 120.9(6)
 .
 .
 ?

 010
 C42
 C37
 122.1(6)
 .
 .
 ?

 C41
 C42
 C37
 117.0(6)
 .
 .
 ?

 S2 C43 H43A 109.5 . ? S2 C43 H43B 109.5 . . ? H43A C43 H43B 109.5 . . ? S2 C43 H43C 109.5 . . ? H43A C43 H43C 109.5 . . ? H43B C43 H43C 109.5 . . S2 C44 H44A 109.5 . . ? ? S2 C44 H44B 109.5 . . ? H44A C44 H44B 109.5 . . ? S2 C44 H44C 109.5 . . ? H44A C44 H44C 109.5 . . ? H44B C44 H44C 109.5 . . ? _diffrn_measured_fraction_theta_max 0.973 _diffrn_reflns_theta_full 27.49 _diffrn_measured_fraction_theta_full _refine_diff_density_max 0.955 _refine_diff_density_min -0.918 _refine_diff_density_rms 0.140 0.973

Appendix E

$\begin{array}{l} \mbox{Crystallographic Information of} \\ U^{VI}O_2(dbm)_2 DMSO \end{array}$

data_shelxl

<pre>_audit_creation_method _chemical_name_systematic ; ? :</pre>	SHELXL-97
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	?
_cnemical_formula_sum	
chemical formula weight	794 63
	751.05
loop_	
_atom_type_symbol	
_atom_type_description	
_atom_type_scat_dispersion_real	
_atom_type_scat_source	9
2^{-1}	
'International Tables Vol C Tak	bles 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000	
'International Tables Vol C Tab	bles 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060	
'International Tables Vol C Tak	bles 4.2.6.8 and 6.1.1.4'
'S' 'S' 0.1246 0.1234	
'II' 'II' 0 6767 0 6646	bles 4.2.6.8 and 6.1.1.4
'International Tables Vol C Tab	hles $4 \ 2 \ 6 \ 8 \ and \ 6 \ 1 \ 1 \ 4'$
_symmetry_cell_setting	?
_symmetry_space_group_name_H-M	?
1	
100p_	
'x v 7'	
(-x+1/2, v+1/2, z+1/2)	
x+1/2, $-y+1/2$, z'	
'-x, -y, z+1/2'	

_cell_length_a 16.090(6)_cell_length_b 9.975(3)_cell_length_c 35.845(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 5753(3) _cell_formula_units_Z 8 _cell_measurement_temperature 93(2) _cell_measurement_reflns_used 7 ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description _exptl_crystal_colour ? _exptl_crystal_size_max 0.10 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas 2 _exptl_crystal_density_diffrn 1.835 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 3072 _exptl_absorpt_coefficient_mu 5.763 _exptl_absorpt_correction_type ? 0.5965 _exptl_absorpt_correction_T_min _exptl_absorpt_correction_T_max 0.5965 _exptl_absorpt_process_details 2 _exptl_special_details ; ? ; _diffrn_ambient_temperature 93(2) _diffrn_radiation_wavelength 0.71075 _diffrn_radiation_type MoK¥a 'fine-focus sealed tube' _diffrn_radiation_source _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type _diffrn_measurement_method ? ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% _diffrn_reflns_number 66370 0.0427 _diffrn_reflns_av_R_equivalents _diffrn_reflns_av_sigmaI/netI 0.0298 _diffrn_reflns_limit_h_min -20 _diffrn_reflns_limit_h_max 20 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max -46 46 _diffrn_reflns_theta_min 3.05 _diffrn_reflns_theta_max 27.49 _reflns_number_total 13170 _reflns_number_gt 11663 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'PROCESS-AUTO' _computing_cell_refinement 'PROCESS-AUTO' _computing_data_reduction 'CrystalStructure' 'DIRDIF99 (PATTY)' _computing_structure_solution _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? ? _computing_publication_material _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^2^$, conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[¥s^2^(Fo^2^)+(0.0312P)^2^+38.5857P] where P=(Fo^2^+2Fc^2^)/3' direct _atom_sites_solution_primary _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00019(3)_refine_ls_extinction_expression 'Fc^{*}^=kFc[1+0.001xFc²[¥]l³/sin(2¥q)]⁻¹/4['] _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' 0.460(6)_refine_ls_abs_structure_Flack _refine_ls_number_reflns 13170 _refine_ls_number_parameters 740 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0417 _refine_ls_R_factor_gt 0.0340 _refine_ls_wR_factor_ref 0.0776 _refine_ls_wR_factor_gt 0.0743 _refine_ls_goodness_of_fit_ref 1.024 _refine_ls_restrained_S_all 1.024 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group

U1 U 0.196401(13) 0.17809(2) 0.000808(5) 0.01262(5) Uani 1 1 d . . . U2 U 0.033981(14) -0.32068(2) -0.284230(6) 0.01492(6) Uani 1 1 d . . . S1 S 0.39606(12) 0.1669(2) 0.04166(6) 0.0324(5) Uani 1 1 d . . . S2 S -0.1514(2) -0.2436(3) -0.33051(11) 0.0838(13) Uani 1 1 d . . . 01 0 0.2673(3) 0.2675(5) -0.02850(14) 0.0202(10) Uani 1 1 d . . . 02 0 0.1268(3) 0.0892(5) 0.03095(13) 0.0183(10) Uani 1 1 d . . . 03 0 0.3029(3) 0.1627(5) 0.04887(13) 0.0207(10) Uani 1 1 d . . . 04 0 0.1852(4) 0.3735(6) 0.03707(15) 0.0228(12) Uani 1 1 d . . . 05 0 0.0847(3) 0.3090(5) -0.01943(14) 0.0207(10) Uani 1 1 d . . . 06 0 0.2698(3) -0.0212(5) -0.01062(12) 0.0172(10) Uani 1 1 d . . . 07 0 0.1420(3) 0.0716(5) -0.05220(13) 0.0178(10) Uani 1 1 d . . . 08 0 -0.0379(3) -0.2368(6) -0.25516(16) 0.0236(11) Uani 1 1 d . . . 09 0 0.1055(4) -0.4033(6) -0.31475(15) 0.0241(11) Uani 1 1 d . . . 010 0 -0.0707(4) -0.3247(6) -0.33347(17) 0.0368(14) Uani 1 1 d . . 011 0 0.0489(4) -0.1259(6) -0.31997(15) 0.0253(12) Uani 1 1 d . . . 012 0 0.1411(3) -0.1857(5) -0.25940(14) 0.0226(10) Uani 1 1 d . . . 013 0 -0.0378(3) -0.5234(5) -0.27521(12) 0.0185(10) Uani 1 1 d . . . 014 0 0.0884(3) -0.4317(5) -0.23198(14) 0.0215(11) Uani 1 1 d . . . C1 C 0.2595(5) 0.5584(8) 0.0814(2) 0.0330(19) Uani 1 1 d . . . H1 H 0.2694 0.4655 0.0851 0.040 Uiso 1 1 calc R . C2 C 0.2936(6) 0.6506(10) 0.1059(3) 0.040(2) Uani 1 1 d . . . H2 H 0.3242 0.6204 0.1270 0.048 Uiso 1 1 calc R . C3 C 0.2833(5) 0.7870(8) 0.0998(2) 0.0267(17) Uani 1 1 d . . . H3 H 0.3085 0.8502 0.1161 0.032 Uiso 1 1 calc R . . C4 C 0.2365(5) 0.8305(8) 0.06990(19) 0.0216(14) Uani 1 1 d . . . H4 H 0.2285 0.9237 0.0658 0.026 Uiso 1 1 calc R . C5 C 0.2008(4) 0.7372(8) 0.0458(2) 0.0176(15) Uani 1 1 d . . . H5 H 0.1690 0.7678 0.0252 0.021 Uiso 1 1 calc R . C6 C 0.2109(5) 0.5998(8) 0.0514(2) 0.0185(15) Uani 1 1 d . . . C7 C 0.1751(5) 0.4945(7) 0.02667(18) 0.0171(13) Uani 1 1 d . . . C8 C 0.1275(4) 0.5291(7) -0.0048(2) 0.0204(14) Uani 1 1 d . . . H8 H 0.1271 0.6199 -0.0129 0.024 Uiso 1 1 calc R . C9 C 0.0809(4) 0.4356(7) -0.02475(18) 0.0162(13) Uani 1 1 d . . . C10 C 0.0194(4) 0.4827(7) -0.05336(19) 0.0161(13) Uani 1 1 d . . . C11 C 0.0271(4) 0.6053(8) -0.0712(2) 0.0194(15) Uani 1 1 d . . . H11 H 0.0739 0.6609 -0.0664 0.023 Uiso 1 1 calc R . C12 C -0.0343(5) 0.6467(7) -0.0962(2) 0.0228(15) Uani 1 1 d . . . H12 H -0.0287 0.7302 -0.1087 0.027 Uiso 1 1 calc R . C13 C -0.1030(5) 0.5679(8) -0.1029(2) 0.0223(15) Uani 1 1 d . . . H13 H -0.1451 0.5982 -0.1195 0.027 Uiso 1 1 calc R . C14 C -0.1107(5) 0.4433(8) -0.08542(18) 0.0208(15) Uani 1 1 d . . . H14 H -0.1579 0.3887 -0.0902 0.025 Uiso 1 1 calc R . C15 C -0.0492(4) 0.3991(7) -0.06094(18) 0.0175(14) Uani 1 1 d . . . H15 H -0.0534 0.3134 -0.0495 0.021 Uiso 1 1 calc R . C16 C 0.3969(4) -0.2006(7) -0.0014(2) 0.0197(13) Uani 1 1 d . . . H16 H 0.3992 -0.1168 0.0111 0.024 Uiso 1 1 calc R . C17 C 0.4596(4) -0.2938(8) 0.0041(2) 0.0241(16) Uani 1 1 d . . . H17 H 0.5044 -0.2737 0.0204 0.029 Uiso 1 1 calc R . C18 C 0.4571(5) -0.4167(8) -0.0142(2) 0.0246(16) Uani 1 1 d . . . H18 H 0.5012 -0.4792 -0.0113 0.030 Uiso 1 1 calc R . C19 C 0.3903(5) -0.4473(8) -0.0368(2) 0.0260(16) Uani 1 1 d . . . H19 H 0.3880 -0.5322 -0.0487 0.031 Uiso 1 1 calc R . C20 C 0.3262(5) -0.3557(7) -0.0422(2) 0.0212(15) Uani 1 1 d . . . H20 H 0.2799 -0.3790 -0.0573 0.025 Uiso 1 1 calc R . . C21 C 0.3301(4) -0.2285(7) -0.02521(18) 0.0160(13) Uani 1 1 d . . . C22 C 0.2672(4) -0.1227(7) -0.03197(19) 0.0153(13) Uani 1 1 d . . . C23 C 0.2099(5) -0.1352(8) -0.0614(2) 0.0195(15) Uani 1 1 d . . . H23 H 0.2094 -0.2163 -0.0753 0.023 Uiso 1 1 calc R . C24 C 0.1536(4) -0.0343(7) -0.07135(18) 0.0165(13) Uani 1 1 d . . . C25 C 0.1026(4) -0.0481(7) -0.10616(19) 0.0169(13) Uani 1 1 d . . . C26 C 0.1231(5) -0.1385(8) -0.13480(19) 0.0210(14) Uani 1 1 d . . .

H26 H 0.1717 -0.1920 -0.1328 0.025 Uiso 1 1 calc R . C27 C 0.0723(5) -0.1497(8) -0.1661(2) 0.0232(15) Uani 1 1 d . . . H27 H 0.0860 -0.2121 -0.1851 0.028 Uiso 1 1 calc R . C28 C 0.0025(5) -0.0714(8) -0.1696(2) 0.0245(16) Uani 1 1 d . . . H28 H -0.0319 -0.0801 -0.1910 0.029 Uiso 1 1 calc R . C29 C -0.0177(4) 0.0198(7) -0.1422(2) 0.0215(14) Uani 1 1 d . . . H29 H -0.0658 0.0741 -0.1448 0.026 Uiso 1 1 calc R . . C30 C 0.0324(4) 0.0330(8) -0.1104(2) 0.0182(15) Uani 1 1 d . . . H30 H 0.0186 0.0970 -0.0918 0.022 Uiso 1 1 calc R . C31 C 0.4255(6) 0.3348(10) 0.0506(5) 0.077(5) Uani 1 1 d . . . H31A H 0.4001 0.3938 0.0320 0.116 Uiso 1 1 calc R . . H31B H 0.4861 0.3426 0.0493 0.116 Uiso 1 1 calc R . . H31C H 0.4065 0.3609 0.0756 0.116 Uiso 1 1 calc R . . C32 C 0.4465(8) 0.0883(14) 0.0767(4) 0.072(4) Uani 1 1 d . . . H32A H 0.4361 -0.0084 0.0752 0.108 Uiso 1 1 calc R . H32B H 0.4264 0.1224 0.1007 0.108 Uiso 1 1 calc R . H32C H 0.5063 0.1052 0.0746 0.108 Uiso 1 1 calc R . . C33 C -0.0062(5) 0.0521(8) -0.37002(19) 0.0234(15) Uani 1 1 d . . . H33 H -0.0098 -0.0417 -0.3744 0.028 Uiso 1 1 calc R . C34 C -0.0373(5) 0.1402(8) -0.3964(2) 0.0287(17) Uani 1 1 d . . . H34 H -0.0609 0.1071 -0.4189 0.034 Uiso 1 1 calc R . . C35 C -0.0338(5) 0.2762(9) -0.3899(2) 0.0250(16) Uani 1 1 d . . . H35 H -0.0564 0.3367 -0.4077 0.030 Uiso 1 1 calc R. C36 C 0.0021(5) 0.3248(8) -0.3579(2) 0.0233(15) Uani 1 1 d . . . H36 H 0.0044 0.4188 -0.3537 0.028 Uiso 1 1 calc R . C37 C 0.0354(4) 0.2370(8) -0.3315(2) 0.0173(15) Uani 1 1 d . . . H37 H 0.0616 0.2709 -0.3097 0.021 Uiso 1 1 calc R . C38 C 0.0298(4) 0.0978(8) -0.3374(2) 0.0184(15) Uani 1 1 d . . . C39 C 0.0618(4) -0.0022(7) -0.31058(18) 0.0164(13) Uani 1 1 d . . . C40 C 0.1065(4) 0.0336(7) -0.27845(18) 0.0164(13) Uani 1 1 d . . . H40 H 0.1082 0.1255 -0.2716 0.020 Uiso 1 1 calc R . C41 C 0.1488(4) -0.0592(7) -0.25600(19) 0.0172(14) Uani 1 1 d . . . C42 C 0.2121(4) -0.0129(8) -0.22940(19) 0.0168(14) Uani 1 1 d . . . 0.2082(5) 0.1157(8) -0.2130(2) 0.0191(14) Uani 1 1 d . . . C43 C H43 H 0.1628 0.1733 -0.2184 0.023 Uiso 1 1 calc R . C44 C 0.2706(5) 0.1583(7) -0.18900(18) 0.0199(14) Uani 1 1 d . . . H44 H 0.2675 0.2446 -0.1779 0.024 Uiso 1 1 calc R . C45 C 0.3371(5) 0.0753(8) -0.18127(19) 0.0214(15) Uani 1 1 d . . . H45 H 0.3802 0.1052 -0.1652 0.026 Uiso 1 1 calc R . C46 C 0.3411(5) -0.0519(8) -0.1970(2) 0.0219(14) Uani 1 1 d . . . H46 H 0.3868 -0.1091 -0.1916 0.026 Uiso 1 1 calc R . C47 C 0.2789(4) -0.0947(7) -0.22042(19) 0.0196(14) Uani 1 1 d . . . H47 H 0.2817 -0.1824 -0.2307 0.023 Uiso 1 1 calc R . C48 C -0.1608(4) -0.7064(7) -0.2879(2) 0.0218(15) Uani 1 1 d . . . H48 H -0.1616 -0.6232 -0.3008 0.026 Uiso 1 1 calc R . C49 C -0.2218(5) -0.8010(8) -0.2946(2) 0.0278(18) Uani 1 1 d . . . H49 H -0.2654 -0.7808 -0.3116 0.033 Uiso 1 1 calc R . C50 C -0.2205(4) -0.9233(8) -0.2773(2) 0.0251(16) Uani 1 1 d . . . H50 H -0.2629 -0.9873 -0.2822 0.030 Uiso 1 1 calc R . C51 C -0.1568(5) -0.9532(8) -0.2524(2) 0.0265(17) Uani 1 1 d . . . H51 H -0.1547 -1.0386 -0.2407 0.032 Uiso 1 1 calc R . C52 C -0.0958(5) -0.8577(8) -0.2448(2) 0.0214(15) Uani 1 1 d . . . H52 H -0.0525 -0.8782 -0.2277 0.026 Uiso 1 1 calc R . . C53 C -0.0979(4) -0.7332(7) -0.26194(18) 0.0159(13) Uani 1 1 d . . . C54 C -0.0358(4) -0.6252(7) -0.2538(2) 0.0171(14) Uani 1 1 d . . . C55 C 0.0200(4) -0.6382(7) -0.2238(2) 0.0164(14) Uani 1 1 d . . . H55 H 0.0194 -0.7194 -0.2099 0.020 Uiso 1 1 calc R . . C56 C 0.0761(4) -0.5390(7) -0.21332(17) 0.0142(12) Uani 1 1 d . . . C57 C 0.1265(4) -0.5521(7) -0.17835(18) 0.0160(13) Uani 1 1 d . . . C58 C 0.1064(5) -0.6445(7) -0.15018(18) 0.0189(14) Uani 1 1 d . . . H58 H 0.0591 -0.7005 -0.1530 0.023 Uiso 1 1 calc R . .

C59 C 0.1548(5) -0.6547(7) -0.11839(19) 0.0204(14) Uani 1 1 d . . . H59 H 0.1401 -0.7165 -0.0993 0.024 Uiso 1 1 calc R . C60 C 0.2249(5) -0.5747(8) -0.1143(2) 0.0230(15) Uani 1 1 d . . . H60 H 0.2594 -0.5840 -0.0929 0.028 Uiso 1 1 calc R . C61 C 0.2446(5) -0.4802(7) -0.1418(2) 0.0222(14) Uani 1 1 d . . . H61 H 0.2916 -0.4236 -0.1387 0.027 Uiso 1 1 calc R . C62 C 0.1957(4) -0.4691(8) -0.1736(2) 0.0195(15) Uani 1 1 d . . . H62 H 0.2094 -0.4048 -0.1921 0.023 Uiso 1 1 calc R . C63 C -0.1699(9) -0.1979(16) -0.3800(4) 0.096(6) Uani 1 1 d . . . H63A H -0.1297 -0.1293 -0.3877 0.143 Uiso 1 1 calc R . . H63B H -0.2264 -0.1627 -0.3828 0.143 Uiso 1 1 calc R . . H63C H -0.1632 -0.2776 -0.3958 0.143 Uiso 1 1 calc R . . C64 C -0.2294(7) -0.3599(14) -0.3276(4) 0.069(4) Uani 1 1 d . . . H64A H -0.2309 -0.3975 -0.3023 0.103 Uiso 1 1 calc R . . H64B H -0.2193 -0.4319 -0.3456 0.103 Uiso 1 1 calc R . . H64C H -0.2828 -0.3169 -0.3331 0.103 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 $U1 \ 0.01269(10) \ 0.01144(10) \ 0.01373(10) \ 0.00007(17) \ -0.00223(9) \ 0.00022(9)$ U2 0.01566(11) 0.01253(10) 0.01658(11) 0.00155(17) -0.00500(9) -0.00137(9) S1 0.0160(8) 0.0411(12) 0.0402(11) -0.0175(9) -0.0064(7) 0.0054(8) S2 0.092(2) 0.0518(17) 0.108(3) -0.0404(18) -0.080(2) 0.0377(18) 01 0.022(3) 0.017(2) 0.022(3) 0.001(2) -0.001(2) -0.004(2) 02 0.017(2) 0.020(2) 0.018(2) 0.0043(19) -0.0013(19) -0.001(2) 03 0.016(2) 0.024(3) 0.021(2) 0.001(2) -0.0069(19) 0.000(2) 04 0.031(3) 0.020(3) 0.017(3) -0.005(2) -0.004(2) 0.007(2) 05 0.020(2) 0.013(2) 0.030(3) 0.002(2) -0.006(2) -0.001(2) 06 0.018(2) 0.014(2) 0.020(2) -0.0023(18) -0.0049(18) 0.0031(19) 07 0.019(2) 0.012(2) 0.022(2) -0.0013(18) -0.007(2) 0.0030(19) 08 0.024(3) 0.022(3) 0.025(3) -0.002(2) -0.002(2) 0.003(2) 09 0.025(3) 0.024(3) 0.023(3) 0.000(2) 0.000(2) -0.002(2) 010 0.043(3) 0.025(3) 0.042(3) 0.009(3) -0.026(3) -0.006(3) 011 0.037(3) 0.019(3) 0.020(3) 0.005(2) -0.008(2) -0.006(2) 012 0.022(3) 0.021(2) 0.025(2) 0.006(2) -0.009(2) -0.006(2) 013 0.019(2) 0.013(2) 0.023(3) 0.0023(18) -0.0066(19) -0.002(2) 014 0.026(3) 0.019(3) 0.020(2) 0.0066(19) -0.008(2) -0.006(2) $C1 \ 0.038(5) \ 0.019(4) \ 0.042(5) \ -0.009(3) \ -0.019(4) \ 0.013(3)$ C2 0.041(5) 0.036(5) 0.044(5) -0.003(4) -0.028(4) 0.009(4) C3 0.025(4) 0.025(4) 0.031(4) -0.011(3) -0.009(3) -0.002(3) C4 0.025(4) 0.019(3) 0.020(3) 0.000(3) 0.000(3) 0.000(3) C5 0.017(3) 0.024(4) 0.011(3) 0.000(3) 0.000(2) -0.001(3) C6 0.021(4) 0.021(4) 0.014(3) -0.001(3) -0.002(3) 0.004(3) C7 0.019(3) 0.018(3) 0.014(3) -0.001(3) 0.003(3) 0.003(3) C8 0.021(3) 0.019(3) 0.021(4) -0.004(3) -0.002(3) 0.003(3) C9 0.012(3) 0.019(3) 0.018(3) 0.003(3) 0.002(2) 0.001(3) C10 0.014(3) 0.019(3) 0.015(3) -0.007(3) 0.001(2) 0.005(3) C11 0.020(4) 0.022(4) 0.016(3) 0.004(3) 0.002(3) -0.001(3) C12 0.023(4) 0.023(4) 0.023(3) 0.002(3) 0.006(3) 0.003(3) C13 0.023(4) 0.027(4) 0.017(3) 0.000(3) 0.000(3) 0.005(3) C14 0.021(3) 0.029(4) 0.013(3) -0.003(3) -0.003(3) 0.001(3) C15 0.019(4) 0.017(3) 0.016(3) -0.004(3) 0.000(3) 0.002(3) C16 0.014(3) 0.022(3) 0.023(3) 0.001(3) 0.002(3) 0.000(2) C17 0.018(3) 0.027(4) 0.027(4) 0.008(3) -0.004(3) -0.001(2) C18 0.021(4) 0.022(4) 0.031(4) 0.005(3) 0.005(3) 0.010(3)

C19	0.023(4)	0.024(4)	0.031(4)	-0.003(3) 0.000(3) 0.004(3)
C20	0.019(4)	0.015(3)	0.030(4)	-0.004(3) -0.004(3) 0.003(3)
C21	0.014(3)	0.020(3)	0.014(3)	$-0.001(3) \ 0.004(2) \ 0.000(3)$
C22	0.016(3)	0.011(3)	0.019(3)	0.002(2) $0.000(3)$ $0.001(3)$
C23	0.021(4)	0.017(4)	0.021(4)	-0.003(3) -0.001(3) -0.002(3)
C24	0.014(3)	0.019(3)	0.017(3)	0.000(3) $0.004(2)$ $-0.002(3)$
C25	$0 \ 013(3)$	0 018(3)	0 020(3)	0.002(3) - 0.002(2) - 0.003(3)
C26	0.017(3)	0.010(3)	0.019(3)	0.002(3) $0.001(3)$ $0.001(3)$
C27	0.017(5) 0.026(4)	0.020(4) 0.025(4)	0.019(3)	-0.001(3) -0.002(3) -0.007(3)
C28	0.020(4)	0.023(4)	0.013(3)	0.001(3) = 0.002(3) = 0.007(3)
C20	0.000(4)	0.022(4)	0.021(4)	0.005(3) = 0.000(3) = 0.000(3)
C20	0.015(3)	0.022(4)	0.024(3)	-0.001(3) -0.003(3) -0.002(3)
C21	0.013(4)	0.021(4)	0.019(4)	-0.001(3) -0.001(2) -0.001(3)
C27	0.017(4)	0.034(3)	0.100(1)	0.032(7) - 0.021(0) - 0.020(4)
C32	0.054(7)	0.074(9)	0.007(9)	0.022(7) - 0.045(7) 0.011(0)
C33	0.026(4)	0.024(4)	0.021(3)	0.003(3) $0.000(3) - 0.002(3)$
C34	0.034(4)	0.026(4)	0.026(4)	0.001(3) - 0.015(3) - 0.001(3)
C35	0.024(4)	0.028(4)	0.023(4)	0.004(3) - 0.005(3) 0.000(3)
C36	0.025(4)	0.019(3)	0.026(4)	0.001(3) $0.003(3)$ $0.005(3)$
C37	0.019(3)	0.01/(4)	0.016(4)	$0.002(3) \ 0.001(2) \ 0.001(3)$
C38	0.014(3)	0.022(4)	0.020(3)	$0.006(3) \ 0.000(3) \ -0.002(3)$
C39	0.013(3)	0.018(3)	0.019(3)	$0.005(3) \ 0.004(3) \ -0.001(3)$
C40	0.016(3)	0.018(3)	0.015(3)	-0.002(3) -0.002(2) 0.002(3)
C41	0.017(3)	0.018(3)	0.017(3)	$0.003(3) \ 0.002(3) \ -0.004(3)$
C42	0.016(3)	0.022(4)	0.013(3)	-0.002(3) 0.000(2) 0.000(3)
C43	0.020(3)	0.020(4)	0.017(3)	0.003(3) 0.000(3) 0.002(3)
C44	0.029(4)	0.019(3)	0.012(3)	-0.002(2) -0.006(3) -0.004(3)
C45	0.022(4)	0.029(4)	0.013(3)	-0.004(3) -0.002(3) -0.005(3)
C46	0.019(3)	0.023(4)	0.023(3)	0.002(3) - 0.006(3) 0.002(3)
C47	0.022(4)	0.016(3)	0.020(3)	0.001(3) - 0.001(3) 0.000(3)
C48	0.022(3)	0.019(4)	0.025(4)	0.003(3) - 0.008(3) 0.000(3)
C49	0.018(3)	0.031(4)	0.035(4)	-0.001(3) -0.010(3) -0.001(3)
C50	0.013(3)	0.026(4)	0.036(4)	-0.004(3) -0.005(3) -0.007(3)
C51	0.025(4)	0.016(4)	0.039(4)	0.003(3) $0.003(3)$ $-0.002(3)$
C52	0.019(4)	0.023(4)	0.023(4)	-0.001(3) -0.004(3) 0.000(3)
C53	0.014(3)	0.018(3)	0.016(3)	$-0.003(3) \ 0.002(2) \ -0.004(3)$
C54	0.015(3)	0.016(3)	0.020(3)	-0.003(3) $0.004(3)$ $0.003(3)$
C 5 5	0 016(3)	$0 \ 014(3)$	$0 \ 019(3)$	0.000(3) - 0.001(3) 0.000(3)
C56	$0 \ 013(3)$	$0 \ 017(3)$	0 012(3)	-0 002(2) -0 005(2) 0 003(3)
C57	0.017(3)	0.017(3)	0.012(3)	-0.004(3) -0.002(2) 0.003(3)
C58	0.017(3)	0.019(3)	0.013(3)	0.000(2) = 0.002(3) 0.001(3)
C59	0.024(4) 0.024(4)	0.020(3) 0.023(4)	0.015(3)	0.000(2) $0.002(3)$ $0.001(3)$
090	0.024(4)	0.023(4)	0.020(3)	-0 $005(3)$ -0 $000(3)$ $0.001(3)$
C61	0.020(4)		0.020(3)	-0 $002(3)$ -0 $001(3)$ -0 $001(3)$
C62	0.022(4)	0.010(3)	0.027(3)	-0.002(3) -0.004(3) -0.001(3)
C62	0.043(4)	0.014(4) 0 100(10)	0.041(4) 0 106(11	$- 0 \cdot 0 0 0 0 0 0 0 0$
C03		0.109(12)	0 077(0)	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
C04	v. V40(0)	W.WOZ(9)	₩.₩//(ð)	W.WS/(/) W.WZS(0) W.WI9(0)

_geom_special_details

;

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance

_geom_bond_site_symmetry_2
_geom_bond_publ_flag
U1 01 1.789(5) . ?
U1 02 1.791(5) . ?
$U1 \ 05 \ 2.337(5) \ . ?$
$U1 \ U7 \ 2.346(5) \ . ?$
$U1 \ U0 \ 2.540(5) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
11 04 2.330(0) . ?
112 08 1 768(5) ?
$U_2 0_9 1.788(6)$.
U2 011 2.340(6) . ?
U2 014 2.346(5) . ?
U2 013 2.351(5) . ?
U2 012 2.361(5) . ?
U2 010 2.440(5) . ?
$S1 \ 03 \ 1.521(5) \ . ?$
SI (32 1.690(10) . ?)
SI (SI I.770(II) . ? S2 (010) 1 533(7) ?
$S_2 = (64 \ 1 \ 713(14)) = 7$
$S_2 (63 1.857(13) . ?$
04 C7 1.274(9) . ?
05 C9 1.279(8) . ?
06 C22 1.270(8) . ?
07 C24 1.273(8) . ?
011 C39 1.296(9) . ?
012 C41 1.274(9) . ?
$013 \ C54 \ 1.273(9) \ . ?$
$014 \ (50 \ 1.277(8) \ .)$
$(1 \ (2 \ 1 \ 386(12)) \ .)$
C1 + 1 + 0.9500 = 7
$C_2 C_3 1.388(12)$.
C2 H2 0.9500 . ?
C3 C4 1.380(11) . ?
C3 H3 0.9500 . ?
C4 C5 1.392(11) . ?
C4 H4 0.9500 . ?
$C5 \ C6 \ 1.395(11) \ . ?$
$C_5 H_5 0.9500 . ?$
$(7 \ (8 \ 1 \ 498(10)) \ .)$
$(8 \ (9 \ 1.393(10))$.
C8 H8 0.9500 . ?
C9 C10 1.501(9) . ?
C10 C11 1.385(11) . ?
C10 C15 1.409(10) . ?
C11 C12 1.397(10) . ?
C11 H11 0.9500 . ?
C12 C13 1.3/(11) . ?
CI2 HI2 U.YOUU . ? CI3 CI4 1 208(11) 7
$C_{13} C_{14} 1.330(11) . $
C14 C15 1.395(10) = 7
C14 H14 0.9500 . ?
C15 H15 0.9500 . ?
C16 C17 1.386(10) . ?
C16 C21 1.400(10) . ?
C16 H16 0.9500 . ?
C17 C18 1.392(11) . ?

C17	H17	0.9500 . ?	
C18	C19	1.379(11) .	?
C18	H18	0.9500 . ?	
C19	C20	1.392(11) .	?
C19	Н19	0.9500 7	
C20	C21	1 409(10)	7
C20	U20	1.409(10).	•
C20	п20 СЭЭ		ר
CZI	CZZ	1.482(10).	?
C22	C23	1.406(10) .	?
C23	C24	1.400(10) .	?
C23	H23	0.9500 . ?	
C24	C25	1.499(9) . ?	
C25	C30	1.398(10) .	?
C25	C26	1.406(10)	7
C26	C27	1 392(10)	7
C26	U26	0.0500 7	•
C20	620	0.3300. :	2
C27		1.3/3(11).	<i>:</i>
C27	H27	0.9500 . ?	_
C28	C29	1.379(11) .	?
C28	H28	0.9500 . ?	
C29	C30	1.400(10) .	?
C29	H29	0.9500 . ?	
C 30	H30	0 9500 7	
C31	H31/	1 A Q8AA 7	
C21	11317	- 0.3000 . :	
C21			
C31	H310	0.9800 . ?	
C32	H32/	A 0.9800 . ?	
C32	H32E	3 0.9800 . ?	
C32	H320	C 0.9800 . ?	
C33	C38	1.382(10).	?
C33	C34	1 385(10)	7
C33	433	0 9500 7	•
C21	C32	1 277(12)	2
C34		1.377(12).	<i>:</i>
C34	H34	0.9500 . ?	_
C35	C36	1.3/2(11) .	?
C35	H35	0.9500 . ?	
C36	C37	1.397(11) .	?
C36	H36	0.9500 . ?	
C37	C38	1.407(11) .	?
C37	H37	0 9500 7	
C38	C30	$1 \sqrt{78(10)}$	2
C20	C10	1.470(10)	•
C39	C40	1.404(9).	2
C40	C41	1.403(10) .	?
C40	H40	0.9500 . ?	
C41	C42	1.470(10) .	?
C42	C47	1.387(10) .	?
C42	C43	1.413(11) .	?
C43	C44	1.388(10)	?
C/3	цлз		•
C4J	045	0.3300.	2
C44		1.302(10).	<i>:</i>
C44	H44	0.9500 . ?	_
C45	C46	1.390(10) .	?
C45	H45	0.9500 . ?	
C46	C47	1.374(10) .	?
C46	H46	0.9500 ?	
C47	H47	0.9500 ?	
C48	C10	1 383(10)	7
C10	CT3	1 100(10)	ว
C40	C22	1.400(10).	:
C48	H48	0.9500 . ?	_
C49	C50	1.3/0(11) .	?
C49	H49	0.9500 . ?	

C50 C51 1.390(11) . ? C50 H50 0.9500 . ? C51 C52 1.394(11) . ? C51 H51 0.9500 . ? C52 C53 1.386(10) . ? C52 H52 0.9500 . ? C53 C54 1.497(10) . ? C54 C55 1.408(10) . ? C55 C56 1.391(10) . ? C55 C56 1.391(10) . ? C57 C62 1.399(10) . ? C57 C62 1.399(10) . ? C57 C58 1.405(10) . ? C58 H58 0.9500 . ? C58 H58 0.9500 . ? C59 C60 1.391(11) . ? C59 H59 0.9500 . ? C60 C61 1.399(11) . ? C60 H60 0.9500 . ? C61 C62 1.388(10) . ? C61 H61 0.9500 . ? C63 H63A 0.9800 . ? C63 H63B 0.9800 . ? C64 H64A 0.9800 . ? C64 H64B 0.9800 . ? C64 H64C 0.9800 . ?
<pre>loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag 01 U1 02 178.8(2) ? 01 U1 05 91.7(2) ? 02 U1 05 89.0(2) ? 01 U1 07 89.3(2) ? 02 U1 07 91.8(2) ? 02 U1 07 91.8(2) ? 01 U1 06 90.0(2) ? 01 U1 06 90.0(2) ? 02 U1 06 90.0(2) ? 01 U1 06 90.0(2) ? 01 U1 06 90.0(2) ? 02 U1 06 90.0(2) ? 03 U1 06 143.66(17) ? 01 U1 06 70.29(16) ? 01 U1 04 87.7(2) ? 02 U1 04 91.7(2) ? 05 U1 04 69.48(18) ? 07 U1 04 142.67(17) ? 01 U1 03 89.9(2) ? 02 U1 03 89.0(2) ? 05 U1 03 142.76(17) ? 06 U1 03 73.52(16) ? 04 U1 03 73.42(18) ? 08 U2 09 178.4(3) ? 09 U2 011 88.9(2) ? 09 U2 011 88.9(2) ? 09 U2 011 88.9(2) ?</pre>

08	112	014	89	8	\mathcal{O}	רי				7		
09	U2	014	91	.8	(2	2)			:	?		
01	1 U2	2 01	4 1	42	.2	27	(1	18)			?
08	U2	013	90	.3	(2	?)			•	?		
09	U2	013	90	.2	(2	?)			:	?		~
01	L U2 1 11'	201	31	.47 `^	.1	3	(] 17	18 7))	•	•	?
014	± 04 112	012	89	v. 2	$\frac{5}{7}$	γ	1/)		?	•	:
09	U2	012	91	.4	(2	2)			:	?		
01	1 U2	2 01	2 6	9.	<u>ò</u> g)(18	3)				?
014	4 U2	2 01	27	2.	28	8(17	7)		•	•	?
013	3 U2	2 01	2 1	42	.8	37	(1	16)	÷	•	?
08		010	89	.0	$\binom{2}{2}$:)))	•		•	?		
09	02 1 112	2 010	09 07	'.0 '1	80	い つ	۱		•	£	7	
014	1 U2	2 01	01	45	.8	36) (1	19)	•	۰.	?
013	3 U2	2 01	0 7	5.	30)(18	3)	-	•	•	?
012	2 U2	2 01	01	41	.7	79	(1	18)			?
03	S1	C32	10	9.	5(5)	•		•	?	
03	S1	C31	10	5. 00	0(4) 7)	•		•	?	
010	23.	$1 C_{2}$	1 1 4 1	00 05	L. 2	:(ן ז 5 ו)	•	•	? ?	
010		2 C6	3 1	01	5	50	7) 7))	:	:	?	
C64	1 S2	2 C6	39	6.	2(6)		•	. '	?	
S1	03	U1	124	.9	(3	3)	•			?		
C7	04	U1	129	.3	(5	5)			•	?		
C9	05		129	.3	(4	[) []	、.		·	?	2	
C_{2}	1 01	5 UL 7 TT1	13	9. g	8 3 (4) \	•		•	? 7	
S2	010	01 0 U2	12	1.	7(4)				?	
C39	9 0	11 U	2 1	31	.7	7	, 5))			?	
C42	1 0	12 U	21	32	. 2	?(5))			?	
C54	1 0	13 U	21	39	. 2	?(4))	•	•	?	
C56	0.0	14 U	21 101	.39 0	. 1	()	4))	•	•	?	
C0 C6	C1	С2 Н1	119		C	,		2	•	4		
C2	C1	H1	119	.5			:	?				
C3	C2	C1	120	.2	(8	3)				?		
C3	C2	H2	119	.9	-		•	?				
C1	C2	H2	119	.9		2	•	?		2		
C4	C3	С2 ЦЗ	120	.ð	())	•	่ว	•	?		
C4 C2	C3	H3	120	. 1			:	: ?				
C3	C4	C5	119	.7	(7	7)				?		
C3	C4	H4	120	.1			•	?				
C5	C4	H4	120	.1			•	?		~		
C6	C5	C4	121	.4	())	•	כ	•	?		
C0 C4	C5	п5 Н5	119	כ.י ק	•		•	' ?				
C1	C6	C5	117	.9	$(\overline{7}$,)	۰.			?		
C1	C6	C7	117	.9	Ç2	ý)				?		
C5	C6	C7	124	. 2	(7	')			•	?		
04	C7	C8	122	. 5	(7	"	•		•	?		
04 C2	C7	C6	121	د. م	(b)	い	•		•	?		
C9	C8	C7	122	.6	(7	いい			:	: ?		
C9	C8	H8	118	.7	`.	ĺ	. '	?	-	-		
C7	C8	H8	118	.7			•	?				
05	C9	C8	124	.0	(6	5)	、.		•	?	2	
05	C9		11	ю. О	2(7/	6) \	•		-	? ?	
0	5	C10	тт		1	0	,	•		•	÷	

C11 C10 C15 120.2(7) . . ? C11 C10 C13 120.2(7) . . ? C11 C10 C9 122.1(6) . . ? C15 C10 C9 117.6(6) . . ? C10 C11 C12 119.6(7) . . ? C10 C11 H11 120.2 . . ? C12 C11 H11 120.2 . . ? C13 C12 C11 120 °(7) C13 C12 C11 120.8(7) . . ? C13 C12 H12 119.6 . . ? C11 C12 H12 119.6 . . ? C11 C12 H12 119.0 . . ? C12 C13 C14 120.0(7) . . ? C12 C13 H13 120.0 . . ? C14 C13 H13 120.0 . . ? C15 C14 C13 120.1(7) . . ? C15 C14 H14 120.0 . . ? C13 C14 H14 120.0 . . ? C14 C15 C14 110 2(7) . . ? C14 C15 C10 119.3(7) . . ? C14 C15 H15 120.3 . . ? C10 C15 H15 120.3 . . ? C17 C16 C21 120.8(7) . . ? C17 C16 H16 119.6 . . ? C21 C16 H16 119.6 . . ? C16 C17 C18 120.2(7) . . ? C16 C17 H17 119.9 . . ? C18 C17 H17 119.9 . . ? C19 C18 C17 119.6(7) . . ? C19 C18 H18 120.2 . . ? C17 C18 H18 120.2 . . ? C20 C19 C18 121.0(7) . . ? C20 C19 H19 119.5 . . ? C18 C19 H19 119.5 . . ? C19 C20 C21 119.8(7) . . ? C19 C20 H20 120.1 . . ? C21 C20 H20 120.1 . . ? C16 C21 C20 118.5(6) . . ? C16 C21 C22 118.8(6) . . ? C16 C21 C22 122 7(6) . . ? C16 C21 C22 118.8(b) . . : C20 C21 C22 122.7(6) . . ? O6 C22 C23 122.9(6) . . ? O6 C22 C21 116.5(6) . . ? C23 C22 C21 120.5(6) . . ? C24 C23 C22 123.5(7) . . ? C24 C23 H23 118.3 . . ? C22 C23 H23 118.3 . . ? C24 C23 L23 123.6(6) . . ? 07 C24 C23 123.6(6) . . ? 07 C24 C25 116.4(6) . . ? C23 C24 C25 120.0(6) . . ? C30 C25 C26 118.7(7) . . ? C30 C25 C24 118.7(6) . . ? C26 C25 C24 122.6(6) . . ? C27 C26 C25 120.2(7) . . ? C27 C26 H26 119.9 . . ? C25 C26 H26 119.9 . . ? C28 C27 C26 120.6(7) . . ? C28 C27 C26 120.6(7) . . ? C28 C27 H27 119.7 . . ? C26 C27 H27 119.7 . . ? C27 C28 C29 120.1(7) . . ? C27 C28 H28 120.0 . . ? C29 C28 H28 120.0 . . ? C28 C29 C30 120.4(7) . . ? C28 C29 H29 119.8 . . ? C30 C29 H29 119.8 . . ?

C29 C30 C25 120.0(7) . . ?

C29	C30	H30	120	.0		?	
C25	C30	H30	120	0		2	
C2J	~~1	11.50	100		• •		
21 (-21 F	13 I A	109	.5	• •	•	
S1 (C31 H	H31B	109	.5		?	
1121	× c 2 ·	1 1121	ID 1	۸ <u>۵</u>	с -		2
по 17	A CS.			v 9.	э.	:	:
S1 (C31 H	131C	109	.5		?	
H31/	A C3	1 H31	C	09.	5.	_	?
11211	$-c^{2}$	1 1121		٥ <u>٥</u> .	г. г	•	ว
пэті	s cs.	г пэ		09.	э.	•	:
S1 (C32 H	132A	109	.5		?	
S1 (772 F	132R	109	5		2	
1122			1 1	•••		•	n n
H321	A C34	2 H34	R I	09.	э.	•	?
S1 (C32 H	132C	109	.5		?	
H32	A C32	о н ар	C_1	N 0	5		2
11201		, 1191		0		•	
H321	3 C34	2 H34	2C I	09.	5.	•	?
C38	C33	C34	121	.3(7)		?
638	C33	нзз	119	4	-	2	
CJ0	633	1155	110		• •		
C34	C33	H33	119	.4	• •	:	
C35	C34	C33	119	.6(7)		?
C35	C3/	Н31	120	2	-	2	
C J J	CJ4	1134	120	• 4	• •	:	
C33	C34	H34	120	. 2		- ?	
C36	C35	C34	120	.5(7)		?
C36	C35	U25	110	Q	-	2	
C30	C33	п <u>э</u> э	119	.0	• •	:	
C34	C35	H35	119	.8		- ?	
C35	C36	C37	120	.4(8)		?
C35	C36	U 36	110	Q	- /	2	
C22	C30	пзо	119	.0	• •	:	
C37	C36	H36	119	.8		- ?	
C36	C37	C38	119	.5(7)		?
636	C37	U27	120	2	- /	2	
C30	C57	1157	120		• •	:	
C38	C37	H37	120	.3		- ?	
C33	C38	C37	118	.7(7)		?
C22	C20	C20	110	20	7)		2
C22	C30	C29	110		<u></u>	• •	
C37	C38	C39	123	.0(1)	• •	. ?
011	C39	C40	122	.5(6)		?
011	C 3 0	C 3 8	111	70	دَم رَم		2
011	C29	C30	114	./(0)	• •	
C40	C39	C38	122	.8(6)	• •	. ?
C41	C40	C39	123	.5(6)		?
C 1 1	C10	U10	110	2	•)	2	
C41	C40	п40	110		• •	:	
C39	C40	H40	118	.3		- ?	
012	C41	C40	123	.4(6)		?
012	C / 1	C12	116	$\frac{1}{2}$	دم د		2
012	C41	C42	110	. 4 (0)	• •	
C40	C41	C42	120	.1(6)	• •	. ?
C47	C42	C43	118	.2(7)		?
C17	C12	C 1 1	120	$\frac{1}{2}$	7)		2
C47	C42	C 4 1	120	. 4 (• •	. :
C43	C42	C41	171	.6(1)	• •	. :
C44	C43	C42	120	.2(7)		?
CAA	C/3	н л з	110	aÌ	-	2	
C11	C+J	1140	110	. 9	• •	:	
C42	C43	H43	119	.9	• •	•	
C45	C44	C43	120	.1(7)		?
C15	CAA	н лл	120	۵Ì	-	2	
C+J	C11	11-1-1	120	.0	• •	:	
C43	C44	H44	120	.0	• •	•	
C44	C45	C46	120	.1(7)		?
C44	C45	H45	120	0	-	2	
		1145	120	.0	• •		
C46	C45	H45	170	.0	• •	?	
C47	C46	C45	119	.9(7)		. ?
C47	C46	H46	120	1	-	?	
C11	C4C	1140	120	• ± 1	• •	:	
C45	C46	н46	170	• 1	• •	?	
C42	C47	C46	121	.6(7)		. ?
C42	C47	H47	110	2	-	7	
C16	C 4 7	11/7	110	. <u>.</u>	• •	· C	
C40	C47	п4/	113	. 4	••••	?	-
C49	C48	C53	119	.9(7)		. ?
C49	C48	H48	120	.0		?	
				. •	· ·	•	

C53 C48 H48 120.0 . . ? C50 C49 C48 121.2(7) . . ? C50 C49 H49 119.4 . . ? C48 C49 H49 119.4 . . ? C49 C50 C51 119.6(7) . . ? C49 C50 H50 120.2 . . ? C51 C50 H50 120.2 . . ? C50 C51 C52 119.8(7) . . ? C50 C51 H51 120.1 . . ? C52 C51 H51 120.1 . . ? C53 C52 C51 120.6(7) . . ? C53 C52 H52 119.7 . . ? C51 C52 H52 119.7 . . ? C52 C53 C48 118.9(6) . . C52 C53 C54 122.9(6) . . ? C48 C53 C54 118.3(6) ? . . 013 C54 C55 123.4(7) ? . . 013 C54 C53 116.1(6) ? . . C55 C54 C53 120.5(7) ? . . C56 C55 C54 123.7(7) ? . . C56 C55 H55 118.2 . . ? . ? C54 C55 H55 118.2 . 014 C56 C55 123.8(6) . . ? 014 C56 C57 115.3(6) . . ? C55 C56 C57 121.0(6) . . ? C62 C57 C58 118.9(6) . . ? C62 C57 C56 118.8(6) . . ? C58 C57 C56 122.3(6) . . ? C59 C58 C57 120.7(7) . . ? C59 C58 H58 119.6 . . ? C57 C58 H58 119.6 . . ? C58 C59 C60 120.1(7) . . ? C58 C59 H59 120.0 . . ? C60 C59 H59 120.0 . . ? C61 C60 C59 119.7(7) . . ? C61 C60 H60 120.1 . . ? C59 C60 H60 120.1 . ? C60 C61 C62 120.2(7) . . ? C60 C61 H61 119.9 . . ? C62 C61 H61 119.9 . . ? C57 C62 C61 120.3(7) . . ? C57 C62 H62 119.8 . . ? C61 C62 H62 119.8 . . ? S2 C63 H63A 109.5 . . ? S2 C63 H63B 109.5 . . ? H63A C63 H63B 109.5 . . ? S2 C63 H63C 109.5 . . ? H63A C63 H63C 109.5 . . ? H63B C63 H63C 109.5 . . ? S2 C64 H64A 109.5 . . ? S2 C64 H64B 109.5 . . ? H64A C64 H64B 109.5 . . ? S2 C64 H64C 109.5 . . ? H64A C64 H64C 109.5 . . ? H64B C64 H64C 109.5 . . ?

loop_

_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4

_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
geom torsion site symmetry 3
geom torsion site symmetry 4
goom torsion publ flag
$-geom_corston_publ_itag$
$(32 \ 31 \ 03 \ 01 \ -133.3(0) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$(31 \ 51 \ 03 \ 01 \ 97.9(6) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$01 \ 01 \ 03 \ S1 \ -25.6(4) \ . \ . \ . \ ?$
02 U1 03 S1 154.8(4) ?
05 U1 O3 S1 -118.2(4) ?
07 U1 03 S1 63.1(5) ?
06 U1 03 S1 64.4(3) ?
04 U1 03 S1 -113.2(4) ?
01 U1 04 C7 45.9(7) ?
02 U1 04 C7 -135.1(7) ?
05 U1 04 C7 -46.8(6) ?
07 U1 04 (7 -39.9(8) ?
06 U1 04 C7 132 3(6) 7
03 III 04 C7 136 5(7)
01 U1 05 C0 - 42 6(6) 2
01 01 05 05 -42.0(0)
02 01 05 (9 150.5(0)
$07 \ 01 \ 05 \ 09 \ -131.4(6) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
06 01 05 (9 - 134.8(5) ?
$04 \ 01 \ 05 \ 09 \ 44.3(6) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$03 \ 01 \ 05 \ (9 \ 49.5(7) \ . \ . \ . \ ?$
01 U1 06 C22 -95.8(7) ?
02 U1 06 C22 85.3(7) ?
05 U1 06 C22 -3.0(8) ?
07 U1 06 C22 -6.5(7) ?
04 U1 06 C22 178.4(6) ?
03 U1 06 C22 174.3(7) ?
01 U1 07 C24 91.1(7) ?
02 U1 07 C24 -88.5(7) ?
05 U1 07 C24 -176.9(7) ?
06 U1 07 C24 0.9(6) ?
04 U1 07 C24 176.4(6) ?
03 U1 07 C24 2.2(8) ?
C64 S2 010 U2 -113.9(6) ?
C63 S2 010 U2 146.3(5) ?
$08 \text{ U2} \ 010 \ \text{S2} \ 10.8(5) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$\begin{array}{c} 09 & 112 & 010 & 52 & -168 & 4(4) \\ \end{array}$
011 II2 010 S2 -79 4(4) 7
014 112 010 52 99 $0(5)$ 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
013 02 010 32 101.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
09 02 011 039 -132.0(7)
$014 \ 02 \ 011 \ 039 \ -41.5(6) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
013 02 011 (39 130.4(0)
U12 U2 U11 U39 -41.0(0)
U1W U2 U11 (39 13/.2(/)
U8 U2 U12 (41 - 52.4(6) ?)
U9 U2 U12 C41 126.1(6) ?
$011 \ 02 \ 012 \ C41 \ 3/./(6) \ . \ . \ . \ ?$
$U14 U2 U12 C41 - 142.5(7) \dots$?
$013 \ 02 \ 012 \ C41 \ -141.7(6) \ . \ . \ ?$
010 U2 012 C41 34.9(8) ?
08 U2 013 C54 -93.2(7) ?
09 U2 013 C54 88.3(7) ?
011 U2 013 C54 176.7(6) ?

014 U2 013 C54 -3.4	(6) ?
012 U2 013 C54 -4.2	(8) ?
	9(7) ?
08 02 014 056 89.0(/) !
$09 \ 02 \ 014 \ C56 \ -91.0$	(/) $($
$011 \ 02 \ 014 \ C56 \ 178.3$	$5(6) \cdot \cdot$
$013 \ 02 \ 014 \ C56 \ -1.4$	(/) $($
012 02 014 C56 178.	1(7) · · · · ?
$C_{10} \ 02 \ 014 \ C_{50} \ 1.0(2)$	9)
$C_1 C_2 C_3 C_4 C_5 - 3.4(13)$)
$C_1 C_2 C_3 C_4 C_5 - 0 0(12)$	···· ') 7
C_{2}^{2} C_{3}^{2} C_{4}^{2} C_{5}^{2} C_{6}^{2} $0.5(12)$	7
(2) (1) (2)	
C_{2}^{2} C_{1}^{2} C_{6}^{2} C_{7}^{2} $-178_{-}9(3)$	8)?
C4 $C5$ $C6$ $C1$ $-1.5(12)$)?
C4 C5 C6 C7 -179.5(7)?
U1 04 C7 C8 34.3(10)) ?
U1 04 C7 C6 -150.4(5)?
C1 C6 C7 O4 6.6(11)	?
C5 C6 C7 O4 -175.3()	7)?
C1 C6 C7 C8 -178.0()	7)?
C5 C6 C7 C8 0.0(11)	?
04 C7 C8 C9 6.8(11)	?
C6 C7 C8 C9 -168.3(7)?
U1 05 C9 C8 -30.3(10	0)?
U1 05 C9 C10 152.3(4	4) ?
C7 C8 C9 O5 -8.9(11))?
C7 C8 C9 C10 168.5(6)?
05 C9 C10 C11 -157.5	5(7) ?
	10) ?
	$9) \dots $
$C_{0} C_{0} C_{1} C_{1$	1(0) ? (10) 7
C13 C10 C11 C12 1.2	$(10) \cdot \cdot$
$C_{10} C_{11} C_{12} C_{13} 0 0$	(11) (0) (11) (11) (11) (11)
C10 $C11$ $C12$ $C13$ 0.9	7(11)
C12 C13 C14 C15 0 3	(10) 7
C13 $C14$ $C15$ $C10$ 1.7	(10) ?
C11 C10 C15 C14 -2.1	5(10) ?
C9 C10 C15 C14 175.	6(6) ?
C21 C16 C17 C18 0.3	(11) ?
C16 C17 C18 C19 -2.	5(12) ?
C17 C18 C19 C20 1.7	(12) ?
C18 C19 C20 C21 1.4	(12) ?
C17 C16 C21 C20 2.7	(10) ?
C17 C16 C21 C22 -17	6.4(7) ?
C19 C20 C21 C16 -3.	6(11) ?
C19 C20 C21 C22 175	.5(7) ?
U1 06 C22 C23 5.4(1)	1) ?
$01 \ 06 \ C22 \ C21 \ -1/6.4$	4(4) ?
C16 C21 C22 06 -12.1	1(9) ?
	9(6) ?
$(10 \ (21 \ (22 \ (23 \ 166 \ (20 \ (21 \ (22 \ (23 \ 166 \ (21 \ (22 \ (23 \ 166 \ (21 \ (22 \ (23 \ (23 \ (21 \ (23 \ (21 \ (23 $.4(7) ?
(20) (21) (22) (23) -12	.9(10) ? 12)
00 C22 C23 C24 3.8() C21 C22 C22 C24 17	14) 13(7) ?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(5)
(22, (23, (24, 07, -8, 5)))	(11)
C22 C23 C24 C25 171	.8(7) ?

07 C24 C25 C30 -16.7(9)	?
C23 C24 C25 C30 163.0(7)	. ?
07 C24 C25 C26 162.8(6)	?
C23 C24 C25 C26 -17.6(10)	. ?
C30 C25 C26 C27 -2.3(11)	. ?
C24 C25 C26 C27 178.3(6)	. 7
(25, (26, (27, (28, 1, 0(11)))))	· . ?
(25) (20) (27) (20) (10) (11) (12)	: 7
$(20 \ C27 \ C20 \ C29 \ 0.3(12) \ . \ . \ .$	؛ م
$(27 \ (28 \ (29 \ (30 \ -0.3(11) \ . \ . \ .$	• '
$C_{28} C_{29} C_{30} C_{25} - 1.0(11) \dots$. ?
C26 C25 C30 C29 2.3(11)	?
C24 C25 C30 C29 -178.3(6)	. ?
C38 C33 C34 C35 -1.3(12)	. ?
C33 C34 C35 C36 1.7(13)	?
$(34 \ (35 \ (36 \ (37 \ -0.2(12)))))$. ?
$(35 \ (36 \ (37 \ (38 \ -1 \ 7(11)$	7
$C_{34} C_{33} C_{38} C_{37} = 0.7(11)$	2
$C_{34} C_{33} C_{30} C_{37} - 0.7(11) $	• •
$(34 \ (33 \ (38 \ (39 \ -1/9.9(7) \ . \ . \ .$. :
C36 C37 C38 C33 2.1(11)	?
C36 C37 C38 C39 -178.7(6)	. ?
U2 011 C39 C40 30.6(10)	?
U2 011 C39 C38 -152.7(5)	. ?
$(33 \ (38 \ (39 \ 011 \ -3.0(10) \ . \ . \ .$. ?
$(37 \ (38 \ (39 \ 011 \ 177 \ 9(7)$	2
(33) (30) (30) (40) (173) (7)	2
$(33 \ C30 \ C39 \ C40 \ I73.7(7) \ . \ .$	• :
$(37 \ (38 \ (39 \ (40 \ -5.5(11) \ . \ . \ .$	• •
$011 \ C39 \ C40 \ C41 \ /.2(11) \ . \ .$?
C38 C39 C40 C41 -169.2(7)	. ?
U2 012 C41 C40 -23.8(10)	. ?
U2 012 C41 C42 162.3(5)	?
C39 C40 C41 012 -10.5(11)	. ?
C39 C40 C41 C42 163 1(6)	. ?
$012 \ C41 \ C42 \ C47 \ 24 \ 4(10)$	7
$C_{40} C_{41} C_{42} C_{47} -149 6(7)$	
$(40 \ (41 \ (42 \ (47 \ -149.0(7) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	• •
012 (41 (42 (43 -157.1(7))	• • •
$(40 \ (41 \ (42 \ (43 \ 28.9(10) \ . \ . \ .$. ?
C47 C42 C43 C44 0.8(11)	?
C41 C42 C43 C44 -177.7(7)	. ?
C42 C43 C44 C45 0.5(11)	?
C43 C44 C45 C46 -1.1(11)	. ?
$(44 \ (45 \ (46 \ (47 \ 0 \ 3(11))$?
$C_{11} C_{12} C_{12} C_{13} C_{14} C_{15} $. 7
$C_{43} C_{42} C_{47} C_{40} - 1.0(11) $	• :
$(41 \ (42 \ (47 \ (40 \ 170.9(7) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	• •
$(45 \ (46 \ (47 \ (42 \ 1.1(11) \ . \ . \ .$	<i>:</i>
C53 C48 C49 C50 - 2.2(12)	. ?
C48 C49 C50 C51 -0.1(12)	. ?
C49 C50 C51 C52 1.4(12)	?
C50 C51 C52 C53 -0.4(12)	. ?
$(51 \ C52 \ C53 \ C48 \ -1.8(11) \ . \ .$. ?
C51 C52 C53 C54 177 9(7)	2
CAQ CAR C53 C52 3 1(11)	· · ·
(49) (40) (53) (52) (51) (11)	: 7
$(49 \ (48 \ (53 \ (54 \ -170.0(7) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. :
$U_2 U_{13} C_{54} C_{55} 3.0(11) \dots$	<i>:</i>
U2 013 C54 C53 -177.7(4)	. ?
C52 C53 C54 O13 170.4(6)	. ?
C48 C53 C54 O13 -9.9(9)	?
C52 C53 C54 C55 -10.2(10)	. ?
C48 C53 C54 C55 169 4(7)	. ?
$013 \ C54 \ C55 \ C56 \ 3 \ 0(11)$	7
$C_{53} C_{54} C_{55} C_{56} -176 2(6)$	7
$\begin{array}{c} \text{CJJ} CJJ$	· · ·
04 014 (30 (3) 0.4(11)	:

U2 014 C56 C57 -173.5(5) ?	
C54 C55 C56 014 -7.2(11) ?	
C54 C55 C56 C57 172.4(6) ?	
014 C56 C57 C62 -16.1(9) ?	
C55 C56 C57 C62 164.2(7) ?	
014 C56 C57 C58 163.7(6) ?	
C55 C56 C57 C58 -16.0(10) ?	
C62 C57 C58 C59 -0.8(10) ?	
C56 C57 C58 C59 179.4(6) ?	
C57 C58 C59 C60 -1.1(11) ?	
C58 C59 C60 C61 2.4(11) ?	
C59 C60 C61 C62 -1.9(11) ?	
C58 C57 C62 C61 1.4(11) ?	
C56 C57 C62 C61 -178.9(6) ?	
C60 C61 C62 C57 0.0(11) ?	
_diffrn_measured_fraction_theta_max	0.998
_diffrn_reflns_theta_full	27.49
_diffrn_measured_fraction_theta_full	0.998
_refine_diff_density_max 1.481	
_refine_diff_density_min -1.404	
_refine_diff_density_rms 0.108	

Appendix F

NMR Relaxation Times in Paramagnetic Solutions^{65, 182, 183)}

Chemical exchange reactions which occur in a system at equilibrium may be conveniently characterized by the mean lifetime (τ) of the exchanging species in each of the chemical sites between which it exchanges. Thus, for a site *A* the mean lifetime of the exchanging species in that site (τ_A) is related to the observed and actual chemical exchange rate constants k_A and k, respectively, by Eq. F.1.

$$\tau_A^{-1}[A] = k_A[A] = k[A]^a[B]^b \cdots$$
 (F.1)

where a, b, \ldots are the orders of the reaction for the concentrations of the reactants. The order of the reaction may be established by determining the variation of τ_A as the concentrations of each of the reactants are varied, and the activation parameters may be determined from the temperature variation of τ_A using Eq. F.2

$$\tau_A^{-1} = k_A = \frac{k_B T}{h} \exp\left[-\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\ddagger}}{R}\right]$$
(F.2)

where $k_{\rm B}$, T, h, R, ΔH^{\ddagger} , and ΔS^{\ddagger} are the Boltzmann constant, the absolute temperature, the Planck constant, the gas constant, the activation enthalpy, and the activation entropy, respectively. In the chemical exchange between sites *i* and *j*, the mean lifetimes (τ_i , τ_j) and rate constants (k_i , k_j) are related by Eqs. F.3 and F.4, respectively.

$$\tau_i P_j = \tau_j P_i \tag{F.3}$$

$$k_i P_i = k_j P_j \tag{F.4}$$

where the populations (molar fractions) of the nuclei in the sites *i* and *j* are denoted by P_i and P_j , respectively.

If one considers both the effects of a relaxation time and a chemical shift in the NMR spectrum of the solution containing paramagnetic species, it is necessary to carry out a rigorous solution of the Bloch equations for the system. For a solution containing a paramagnetic metal ion, the relaxation time is given by,

$$(T_{2\text{obs}}^{-1} - T_{2n}^{-1})\frac{P_L}{P_M} = \tau_M^{-1} \left[\frac{T_{2M}^{-2} + T_{2M}^{-1} \tau_M^{-1} + \Delta \omega_M^2}{(T_{2M}^{-1} + \tau_M^{-1})^2 + \Delta \omega_M^2} \right]$$
(F.5)

Figure F.1. Temperature dependence of $P_M^{-1}(T_2^{-1} - T_{2A}^{0-1})$ for the protons in CH₃CN solutions of Ni(CH₃CN)₆²⁺ at 56.4 MHz quoted from a review by Stengle and Langford,¹⁸³⁾ where $T_2 = T_{2osb}$ and $T_{2A}^0 = T_{2n}$ in Eq. F.5. P_L can be neglected because of the dilute solution.

where T_{2obs} and T_{2n} are the transverse relaxation times of a free ligand in the presence and absence of the paramagnetic species, respectively, and T_{2M} is that of the coordinated ligand. P_L and P_M are the molar fractions of the free and coordinated ligand, respectively. Further, τ_M is the mean lifetime of the coordinate ligand, and $\Delta \omega_M$ is the difference between the chemical shifts of the free and coordinated ligand.

At low temperatures, where the exchange is negligible, the line-width of the free ligand show a very slight temperature dependence. This is illustrated in Region I of Figure F.1 which shows the bulk solvent proton resonance of the acetonitrile-Ni²⁺ system over a wide temperature range.

It is convenient to consider the implications of Eq. F.5 for two limiting cases depending on the magnitude of τ_M . If the chemical shift is large, and τ_M not too small ($\Delta \omega_M^2 \gg T_{2M}^{-2}$, τ_M^{-2}), Eq. F.5 leads to,

$$(T_{2\text{obs}}^{-1} - T_{2n}^{-1})\frac{P_L}{P_M} = \tau_M^{-1}$$
(F.6)

The same result for the line-width is also obtained when the factors other than the chemical shift dominate the relaxation process, *i.e.*, $T_{2M}^{-2} \gg \Delta \omega_M^2$, τ_M^{-2} . Hence, in such a temperature region (Region II in Figure F.1), the exchange rate can be determined regardless of the relaxation mechanism. This is a fortunate result, because the details of the relaxation process are often unclear. The τ_M is related with the first-order rate constant (k_{ex}) of the exchange reaction of L in its metal complex by replacing τ_A and k_A in Eq. F.2 with τ_M and k_{ex} , respectively. Therefore, it is a simple matter to calculate the activation parameters for the first-order exchange reaction from this equation. Many ligand–metal systems have been analyzed using this expression.

If the exchange rate is rapid compared with the conditions for which Eq. F.6 are appropriate, the line-width, $(T_{2obs}^{-1} - T_{2n}^{-1})P_L/P_M$, changes with temperature as shown in Regions III and IV of Figure F.1. Here, the lifetime in the coordination sphere is too short for relaxation

to occur each time the ligand binds to the metal ion. Since several encounters between the ligand and metal ion are required for relaxation, the line-width is no longer directly proportional to the exchange rate. As before, there are two possibilities; effects due to chemical shift may predominate, or, if $\Delta \omega_M$ is small, terms depending on T_{2M} will be important. In the former situation ($\tau_M^{-2} \gg \Delta \omega_M \gg T_{2M}^{-1} \tau_M^{-1}$, Region III), we have,

$$(T_{2\text{obs}}^{-1} - T_{2n}^{-1})\frac{P_L}{P_M} = \tau_M^{-1}\Delta\omega_M^2$$
(F.7)

Since the line-width depends upon τ_M , it will change rapidly with temperature but in a direction opposite to Region II. If the chemical shift is independently known, τ_M values and hence the exchange rate can be determined.

Finally, when the exchange rate is extremely fast, or the chemical shift is small $(T_{2M}^{-1}\tau_M^{-1} \gg T_{2M}^{-2}, \Delta\omega_M^2)$, Region IV), we have,

$$(T_{2\text{obs}}^{-1} - T_{2n}^{-1})\frac{P_L}{P_M} = T_{2M}^{-1}$$
(F.8)

Here, the line-width no longer depends on the exchange rate, and it varies but slightly with temperature. This is the limiting high temperature region found in most systems; it is generally called the "fast exchange region".